Camera Space Particle Filter for the Robust and Precise Indoor Localization of a Wheelchair Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1155/2016/8729895
This paper presents the theoretical development and experimental implementation of a sensing technique for the robust and precise localization of a robotic wheelchair. Estimates of the vehicle’s position and orientation are obtained, based on camera observations of visual markers located at discrete positions within the environment. A novel implementation of a particle filter on camera sensor space (Camera-Space Particle Filter) is used to combine visual observations with sensed wheel rotations mapped onto a camera space through an observation function. The camera space particle filter fuses the odometry and vision sensors information within camera space, resulting in a precise update of the wheelchair’s pose. Using this approach, an inexpensive implementation on an electric wheelchair is presented. Experimental results within three structured scenarios and comparative performance using an Extended Kalman Filter (EKF) and Camera-Space Particle Filter (CSPF) implementations are discussed. The CSPF was found to be more precise in the pose of the wheelchair than the EKF since the former does not require the assumption of a linear system affected by zero-mean Gaussian noise. Furthermore, the time for computational processing for both implementations is of the same order of magnitude.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2016/8729895
- http://downloads.hindawi.com/journals/js/2016/8729895.pdf
- OA Status
- hybrid
- Cited By
- 8
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2230242400
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2230242400Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2016/8729895Digital Object Identifier
- Title
-
Camera Space Particle Filter for the Robust and Precise Indoor Localization of a WheelchairWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-11-15Full publication date if available
- Authors
-
Raúl Chavez-Romero, Antonio Cárdenas, Mauro Maya, Alejandra Sanchez-Flores, Davide PiovesanList of authors in order
- Landing page
-
https://doi.org/10.1155/2016/8729895Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/js/2016/8729895.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/js/2016/8729895.pdfDirect OA link when available
- Concepts
-
Particle filter, Computer vision, Extended Kalman filter, Computer science, Odometry, Artificial intelligence, Wheelchair, Kalman filter, Filter (signal processing), Noise (video), Monte Carlo localization, Orientation (vector space), Mobile robot, Robot, Mathematics, Image (mathematics), Geometry, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 1, 2021: 1, 2019: 2, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2230242400 |
|---|---|
| doi | https://doi.org/10.1155/2016/8729895 |
| ids.doi | https://doi.org/10.1155/2016/8729895 |
| ids.mag | 2230242400 |
| ids.openalex | https://openalex.org/W2230242400 |
| fwci | 0.50123666 |
| type | article |
| title | Camera Space Particle Filter for the Robust and Precise Indoor Localization of a Wheelchair |
| awards[0].id | https://openalex.org/G3810269362 |
| awards[0].funder_id | https://openalex.org/F4320321739 |
| awards[0].display_name | |
| awards[0].funder_award_id | 213987 |
| awards[0].funder_display_name | Consejo Nacional de Ciencia y Tecnología |
| biblio.issue | |
| biblio.volume | 2016 |
| biblio.last_page | 11 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T11707 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9988999962806702 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1709 |
| topics[2].subfield.display_name | Human-Computer Interaction |
| topics[2].display_name | Gaze Tracking and Assistive Technology |
| funders[0].id | https://openalex.org/F4320321672 |
| funders[0].ror | https://ror.org/03zcxha54 |
| funders[0].display_name | Else Kröner-Fresenius-Stiftung |
| funders[1].id | https://openalex.org/F4320321739 |
| funders[1].ror | https://ror.org/059ex5q34 |
| funders[1].display_name | Consejo Nacional de Ciencia y Tecnología |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C52421305 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7342987060546875 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1151499 |
| concepts[0].display_name | Particle filter |
| concepts[1].id | https://openalex.org/C31972630 |
| concepts[1].level | 1 |
| concepts[1].score | 0.690375804901123 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[1].display_name | Computer vision |
| concepts[2].id | https://openalex.org/C206833254 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6347646713256836 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5421817 |
| concepts[2].display_name | Extended Kalman filter |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5920383930206299 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C49441653 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5796890258789062 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2014717 |
| concepts[4].display_name | Odometry |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5491757392883301 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2781042323 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5465784072875977 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q191931 |
| concepts[6].display_name | Wheelchair |
| concepts[7].id | https://openalex.org/C157286648 |
| concepts[7].level | 2 |
| concepts[7].score | 0.501244068145752 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[7].display_name | Kalman filter |
| concepts[8].id | https://openalex.org/C106131492 |
| concepts[8].level | 2 |
| concepts[8].score | 0.499889612197876 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[8].display_name | Filter (signal processing) |
| concepts[9].id | https://openalex.org/C99498987 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4778939485549927 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[9].display_name | Noise (video) |
| concepts[10].id | https://openalex.org/C106480740 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4422685503959656 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6904694 |
| concepts[10].display_name | Monte Carlo localization |
| concepts[11].id | https://openalex.org/C16345878 |
| concepts[11].level | 2 |
| concepts[11].score | 0.436939001083374 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q107472979 |
| concepts[11].display_name | Orientation (vector space) |
| concepts[12].id | https://openalex.org/C19966478 |
| concepts[12].level | 3 |
| concepts[12].score | 0.19842267036437988 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[12].display_name | Mobile robot |
| concepts[13].id | https://openalex.org/C90509273 |
| concepts[13].level | 2 |
| concepts[13].score | 0.16027256846427917 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[13].display_name | Robot |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.15378740429878235 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C136764020 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[17].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/particle-filter |
| keywords[0].score | 0.7342987060546875 |
| keywords[0].display_name | Particle filter |
| keywords[1].id | https://openalex.org/keywords/computer-vision |
| keywords[1].score | 0.690375804901123 |
| keywords[1].display_name | Computer vision |
| keywords[2].id | https://openalex.org/keywords/extended-kalman-filter |
| keywords[2].score | 0.6347646713256836 |
| keywords[2].display_name | Extended Kalman filter |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5920383930206299 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/odometry |
| keywords[4].score | 0.5796890258789062 |
| keywords[4].display_name | Odometry |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5491757392883301 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/wheelchair |
| keywords[6].score | 0.5465784072875977 |
| keywords[6].display_name | Wheelchair |
| keywords[7].id | https://openalex.org/keywords/kalman-filter |
| keywords[7].score | 0.501244068145752 |
| keywords[7].display_name | Kalman filter |
| keywords[8].id | https://openalex.org/keywords/filter |
| keywords[8].score | 0.499889612197876 |
| keywords[8].display_name | Filter (signal processing) |
| keywords[9].id | https://openalex.org/keywords/noise |
| keywords[9].score | 0.4778939485549927 |
| keywords[9].display_name | Noise (video) |
| keywords[10].id | https://openalex.org/keywords/monte-carlo-localization |
| keywords[10].score | 0.4422685503959656 |
| keywords[10].display_name | Monte Carlo localization |
| keywords[11].id | https://openalex.org/keywords/orientation |
| keywords[11].score | 0.436939001083374 |
| keywords[11].display_name | Orientation (vector space) |
| keywords[12].id | https://openalex.org/keywords/mobile-robot |
| keywords[12].score | 0.19842267036437988 |
| keywords[12].display_name | Mobile robot |
| keywords[13].id | https://openalex.org/keywords/robot |
| keywords[13].score | 0.16027256846427917 |
| keywords[13].display_name | Robot |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.15378740429878235 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1155/2016/8729895 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S96783963 |
| locations[0].source.issn | 1687-725X, 1687-7268 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1687-725X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://downloads.hindawi.com/journals/js/2016/8729895.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Sensors |
| locations[0].landing_page_url | https://doi.org/10.1155/2016/8729895 |
| locations[1].id | pmh:oai:doaj.org/article:6ffc80ffe3504167a97608d261b7d92d |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Sensors, Vol 2016 (2016) |
| locations[1].landing_page_url | https://doaj.org/article/6ffc80ffe3504167a97608d261b7d92d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5006007949 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Raúl Chavez-Romero |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I196664497 |
| authorships[0].affiliations[0].raw_affiliation_string | Universidad Autonoma de San Luis Potosi, 78290 San Luis Potosi, SLP, Mexico |
| authorships[0].institutions[0].id | https://openalex.org/I196664497 |
| authorships[0].institutions[0].ror | https://ror.org/000917t60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I196664497 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Autonomous University of San Luis Potosí |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Raul Chavez-Romero |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Universidad Autonoma de San Luis Potosi, 78290 San Luis Potosi, SLP, Mexico |
| authorships[1].author.id | https://openalex.org/A5046449148 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4208-0566 |
| authorships[1].author.display_name | Antonio Cárdenas |
| authorships[1].countries | MX |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I196664497 |
| authorships[1].affiliations[0].raw_affiliation_string | Universidad Autonoma de San Luis Potosi, 78290 San Luis Potosi, SLP, Mexico |
| authorships[1].institutions[0].id | https://openalex.org/I196664497 |
| authorships[1].institutions[0].ror | https://ror.org/000917t60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I196664497 |
| authorships[1].institutions[0].country_code | MX |
| authorships[1].institutions[0].display_name | Autonomous University of San Luis Potosí |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Antonio Cardenas |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universidad Autonoma de San Luis Potosi, 78290 San Luis Potosi, SLP, Mexico |
| authorships[2].author.id | https://openalex.org/A5057528371 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4548-8666 |
| authorships[2].author.display_name | Mauro Maya |
| authorships[2].countries | MX |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I196664497 |
| authorships[2].affiliations[0].raw_affiliation_string | Universidad Autonoma de San Luis Potosi, 78290 San Luis Potosi, SLP, Mexico |
| authorships[2].institutions[0].id | https://openalex.org/I196664497 |
| authorships[2].institutions[0].ror | https://ror.org/000917t60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I196664497 |
| authorships[2].institutions[0].country_code | MX |
| authorships[2].institutions[0].display_name | Autonomous University of San Luis Potosí |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mauro Maya |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universidad Autonoma de San Luis Potosi, 78290 San Luis Potosi, SLP, Mexico |
| authorships[3].author.id | https://openalex.org/A5037248081 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9774-1267 |
| authorships[3].author.display_name | Alejandra Sanchez-Flores |
| authorships[3].countries | MX |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I196664497 |
| authorships[3].affiliations[0].raw_affiliation_string | Universidad Autonoma de San Luis Potosi, 78290 San Luis Potosi, SLP, Mexico |
| authorships[3].institutions[0].id | https://openalex.org/I196664497 |
| authorships[3].institutions[0].ror | https://ror.org/000917t60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I196664497 |
| authorships[3].institutions[0].country_code | MX |
| authorships[3].institutions[0].display_name | Autonomous University of San Luis Potosí |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alejandra Sanchez |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Universidad Autonoma de San Luis Potosi, 78290 San Luis Potosi, SLP, Mexico |
| authorships[4].author.id | https://openalex.org/A5037551926 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9258-8985 |
| authorships[4].author.display_name | Davide Piovesan |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I967637 |
| authorships[4].affiliations[0].raw_affiliation_string | Gannon University, Erie, PA 16541, USA |
| authorships[4].institutions[0].id | https://openalex.org/I967637 |
| authorships[4].institutions[0].ror | https://ror.org/02y041669 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I967637 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Gannon University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Davide Piovesan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Gannon University, Erie, PA 16541, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://downloads.hindawi.com/journals/js/2016/8729895.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Camera Space Particle Filter for the Robust and Precise Indoor Localization of a Wheelchair |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W2128655648, https://openalex.org/W1518703880, https://openalex.org/W1837108749, https://openalex.org/W2165929034, https://openalex.org/W2134351344, https://openalex.org/W2765521311, https://openalex.org/W3147794891, https://openalex.org/W4387559098, https://openalex.org/W4387452254, https://openalex.org/W4367281123 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2017 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2016 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2016/8729895 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S96783963 |
| best_oa_location.source.issn | 1687-725X, 1687-7268 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1687-725X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://downloads.hindawi.com/journals/js/2016/8729895.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2016/8729895 |
| primary_location.id | doi:10.1155/2016/8729895 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S96783963 |
| primary_location.source.issn | 1687-725X, 1687-7268 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1687-725X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://downloads.hindawi.com/journals/js/2016/8729895.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Sensors |
| primary_location.landing_page_url | https://doi.org/10.1155/2016/8729895 |
| publication_date | 2015-11-15 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2019577117, https://openalex.org/W2146545231, https://openalex.org/W2089047794, https://openalex.org/W1980944740, https://openalex.org/W2059721568, https://openalex.org/W2023991624, https://openalex.org/W2002369608, https://openalex.org/W2032017569, https://openalex.org/W2118727930, https://openalex.org/W2000246475, https://openalex.org/W2005995917, https://openalex.org/W2098613108, https://openalex.org/W2006524841, https://openalex.org/W2025587822, https://openalex.org/W2101700686, https://openalex.org/W2167168312, https://openalex.org/W2996662618, https://openalex.org/W2168544938, https://openalex.org/W2102446796, https://openalex.org/W2794413559, https://openalex.org/W1577098499, https://openalex.org/W619390944, https://openalex.org/W4285719527, https://openalex.org/W2021847538, https://openalex.org/W2503900448 |
| referenced_works_count | 25 |
| abstract_inverted_index.A | 46 |
| abstract_inverted_index.a | 10, 20, 50, 72, 96, 164 |
| abstract_inverted_index.an | 76, 106, 110, 125 |
| abstract_inverted_index.at | 40 |
| abstract_inverted_index.be | 143 |
| abstract_inverted_index.by | 168 |
| abstract_inverted_index.in | 95, 146 |
| abstract_inverted_index.is | 60, 113, 181 |
| abstract_inverted_index.of | 9, 19, 24, 36, 49, 99, 149, 163, 182, 186 |
| abstract_inverted_index.on | 33, 53, 109 |
| abstract_inverted_index.to | 62, 142 |
| abstract_inverted_index.EKF | 154 |
| abstract_inverted_index.The | 79, 138 |
| abstract_inverted_index.and | 6, 16, 28, 87, 121, 130 |
| abstract_inverted_index.are | 30, 136 |
| abstract_inverted_index.for | 13, 175, 178 |
| abstract_inverted_index.not | 159 |
| abstract_inverted_index.the | 3, 14, 25, 44, 85, 100, 147, 150, 153, 156, 161, 173, 183 |
| abstract_inverted_index.was | 140 |
| abstract_inverted_index.CSPF | 139 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 179 |
| abstract_inverted_index.does | 158 |
| abstract_inverted_index.more | 144 |
| abstract_inverted_index.onto | 71 |
| abstract_inverted_index.pose | 148 |
| abstract_inverted_index.same | 184 |
| abstract_inverted_index.than | 152 |
| abstract_inverted_index.this | 104 |
| abstract_inverted_index.time | 174 |
| abstract_inverted_index.used | 61 |
| abstract_inverted_index.with | 66 |
| abstract_inverted_index.(EKF) | 129 |
| abstract_inverted_index.Using | 103 |
| abstract_inverted_index.based | 32 |
| abstract_inverted_index.found | 141 |
| abstract_inverted_index.fuses | 84 |
| abstract_inverted_index.novel | 47 |
| abstract_inverted_index.order | 185 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.pose. | 102 |
| abstract_inverted_index.since | 155 |
| abstract_inverted_index.space | 56, 74, 81 |
| abstract_inverted_index.three | 118 |
| abstract_inverted_index.using | 124 |
| abstract_inverted_index.wheel | 68 |
| abstract_inverted_index.(CSPF) | 134 |
| abstract_inverted_index.Filter | 128, 133 |
| abstract_inverted_index.Kalman | 127 |
| abstract_inverted_index.camera | 34, 54, 73, 80, 92 |
| abstract_inverted_index.filter | 52, 83 |
| abstract_inverted_index.former | 157 |
| abstract_inverted_index.linear | 165 |
| abstract_inverted_index.mapped | 70 |
| abstract_inverted_index.noise. | 171 |
| abstract_inverted_index.robust | 15 |
| abstract_inverted_index.sensed | 67 |
| abstract_inverted_index.sensor | 55 |
| abstract_inverted_index.space, | 93 |
| abstract_inverted_index.system | 166 |
| abstract_inverted_index.update | 98 |
| abstract_inverted_index.vision | 88 |
| abstract_inverted_index.visual | 37, 64 |
| abstract_inverted_index.within | 43, 91, 117 |
| abstract_inverted_index.Filter) | 59 |
| abstract_inverted_index.combine | 63 |
| abstract_inverted_index.located | 39 |
| abstract_inverted_index.markers | 38 |
| abstract_inverted_index.precise | 17, 97, 145 |
| abstract_inverted_index.require | 160 |
| abstract_inverted_index.results | 116 |
| abstract_inverted_index.robotic | 21 |
| abstract_inverted_index.sensing | 11 |
| abstract_inverted_index.sensors | 89 |
| abstract_inverted_index.through | 75 |
| abstract_inverted_index.Extended | 126 |
| abstract_inverted_index.Gaussian | 170 |
| abstract_inverted_index.Particle | 58, 132 |
| abstract_inverted_index.affected | 167 |
| abstract_inverted_index.discrete | 41 |
| abstract_inverted_index.electric | 111 |
| abstract_inverted_index.odometry | 86 |
| abstract_inverted_index.particle | 51, 82 |
| abstract_inverted_index.position | 27 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.Estimates | 23 |
| abstract_inverted_index.approach, | 105 |
| abstract_inverted_index.function. | 78 |
| abstract_inverted_index.obtained, | 31 |
| abstract_inverted_index.positions | 42 |
| abstract_inverted_index.resulting | 94 |
| abstract_inverted_index.rotations | 69 |
| abstract_inverted_index.scenarios | 120 |
| abstract_inverted_index.technique | 12 |
| abstract_inverted_index.zero-mean | 169 |
| abstract_inverted_index.assumption | 162 |
| abstract_inverted_index.discussed. | 137 |
| abstract_inverted_index.magnitude. | 187 |
| abstract_inverted_index.presented. | 114 |
| abstract_inverted_index.processing | 177 |
| abstract_inverted_index.structured | 119 |
| abstract_inverted_index.wheelchair | 112, 151 |
| abstract_inverted_index.comparative | 122 |
| abstract_inverted_index.development | 5 |
| abstract_inverted_index.inexpensive | 107 |
| abstract_inverted_index.information | 90 |
| abstract_inverted_index.observation | 77 |
| abstract_inverted_index.orientation | 29 |
| abstract_inverted_index.performance | 123 |
| abstract_inverted_index.theoretical | 4 |
| abstract_inverted_index.vehicle’s | 26 |
| abstract_inverted_index.wheelchair. | 22 |
| abstract_inverted_index.Camera-Space | 131 |
| abstract_inverted_index.Experimental | 115 |
| abstract_inverted_index.Furthermore, | 172 |
| abstract_inverted_index.environment. | 45 |
| abstract_inverted_index.experimental | 7 |
| abstract_inverted_index.localization | 18 |
| abstract_inverted_index.observations | 35, 65 |
| abstract_inverted_index.(Camera-Space | 57 |
| abstract_inverted_index.computational | 176 |
| abstract_inverted_index.implementation | 8, 48, 108 |
| abstract_inverted_index.wheelchair’s | 101 |
| abstract_inverted_index.implementations | 135, 180 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5006007949 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I196664497 |
| citation_normalized_percentile.value | 0.73968367 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |