Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/su13010225
Public transportation is a vital service provided to enable a community to carry out daily activities. One of the mass transportations used in an area is a bus. Moreover, the smart transportation concept is an integrated application of technology and strategy in the transportation system. Using smart idea is the key to the application of the Internet of Things. The ways to improve the management transportation system become a bottleneck for the traditional data analytics solution, one of the answers used in machine learning. This paper uses the Artificial Neural Network (ANN) and Support Vector Machine (SVM) algorithm for the best prediction of travel time with a lower error rate on a case study of a university shuttle bus. Apart from predicting the travel time, this study also considers the fuel cost and gas emission from transportation. The analysis of the experiment shows that the ANN outperformed the SVM. Furthermore, a recommender system is used to recommend suitable routes for the chosen scenario. The experiments extend the discussion with a range of future directions on the stipulated field of study.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/su13010225
- https://www.mdpi.com/2071-1050/13/1/225/pdf
- OA Status
- gold
- Cited By
- 25
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3117040772
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3117040772Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/su13010225Digital Object Identifier
- Title
-
Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case StudyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-29Full publication date if available
- Authors
-
Rafidah Md Noor, Nadia Bella Gustiani Rasyidi, Tarak Nandy, Raenu KolandaisamyList of authors in order
- Landing page
-
https://doi.org/10.3390/su13010225Publisher landing page
- PDF URL
-
https://www.mdpi.com/2071-1050/13/1/225/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2071-1050/13/1/225/pdfDirect OA link when available
- Concepts
-
Bottleneck, Public transport, Support vector machine, Artificial neural network, Service (business), Computer science, Field (mathematics), Intelligent transportation system, Fleet management, Machine learning, Transport engineering, Operations research, Artificial intelligence, Engineering, Embedded system, Mathematics, Pure mathematics, Economics, EconomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
25Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3, 2023: 5, 2022: 5, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3117040772 |
|---|---|
| doi | https://doi.org/10.3390/su13010225 |
| ids.doi | https://doi.org/10.3390/su13010225 |
| ids.mag | 3117040772 |
| ids.openalex | https://openalex.org/W3117040772 |
| fwci | 2.48876038 |
| type | article |
| title | Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 225 |
| biblio.first_page | 225 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T12095 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9988999962806702 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Vehicle emissions and performance |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C2780513914 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7742850184440613 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[0].display_name | Bottleneck |
| concepts[1].id | https://openalex.org/C539828613 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6692349910736084 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q178512 |
| concepts[1].display_name | Public transport |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.607957124710083 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5533881187438965 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C2780378061 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5303291082382202 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[4].display_name | Service (business) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.507660984992981 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C9652623 |
| concepts[6].level | 2 |
| concepts[6].score | 0.506105363368988 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[6].display_name | Field (mathematics) |
| concepts[7].id | https://openalex.org/C47796450 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5046054124832153 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q508378 |
| concepts[7].display_name | Intelligent transportation system |
| concepts[8].id | https://openalex.org/C2777305159 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4640575647354126 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1430291 |
| concepts[8].display_name | Fleet management |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.44675397872924805 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C22212356 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44266921281814575 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[10].display_name | Transport engineering |
| concepts[11].id | https://openalex.org/C42475967 |
| concepts[11].level | 1 |
| concepts[11].score | 0.39795830845832825 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[11].display_name | Operations research |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3964245617389679 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.36480098962783813 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C149635348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.12253090739250183 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[14].display_name | Embedded system |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C202444582 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[16].display_name | Pure mathematics |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C136264566 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q159810 |
| concepts[18].display_name | Economy |
| keywords[0].id | https://openalex.org/keywords/bottleneck |
| keywords[0].score | 0.7742850184440613 |
| keywords[0].display_name | Bottleneck |
| keywords[1].id | https://openalex.org/keywords/public-transport |
| keywords[1].score | 0.6692349910736084 |
| keywords[1].display_name | Public transport |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.607957124710083 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5533881187438965 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/service |
| keywords[4].score | 0.5303291082382202 |
| keywords[4].display_name | Service (business) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.507660984992981 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/field |
| keywords[6].score | 0.506105363368988 |
| keywords[6].display_name | Field (mathematics) |
| keywords[7].id | https://openalex.org/keywords/intelligent-transportation-system |
| keywords[7].score | 0.5046054124832153 |
| keywords[7].display_name | Intelligent transportation system |
| keywords[8].id | https://openalex.org/keywords/fleet-management |
| keywords[8].score | 0.4640575647354126 |
| keywords[8].display_name | Fleet management |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.44675397872924805 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/transport-engineering |
| keywords[10].score | 0.44266921281814575 |
| keywords[10].display_name | Transport engineering |
| keywords[11].id | https://openalex.org/keywords/operations-research |
| keywords[11].score | 0.39795830845832825 |
| keywords[11].display_name | Operations research |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.3964245617389679 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.36480098962783813 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/embedded-system |
| keywords[14].score | 0.12253090739250183 |
| keywords[14].display_name | Embedded system |
| language | en |
| locations[0].id | doi:10.3390/su13010225 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S10134376 |
| locations[0].source.issn | 2071-1050 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2071-1050 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Sustainability |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2071-1050/13/1/225/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sustainability |
| locations[0].landing_page_url | https://doi.org/10.3390/su13010225 |
| locations[1].id | pmh:oai:doaj.org/article:5e96fcd0bfa84431aec3f93fef3bbcf2 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sustainability, Vol 13, Iss 225, p 225 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/5e96fcd0bfa84431aec3f93fef3bbcf2 |
| locations[2].id | pmh:oai:mdpi.com:/2071-1050/13/1/225/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sustainability; Volume 13; Issue 1; Pages: 225 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/su13010225 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5017116281 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6266-2390 |
| authorships[0].author.display_name | Rafidah Md Noor |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I33849332 |
| authorships[0].affiliations[1].raw_affiliation_string | Centre for Mobile Cloud Computing, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I33849332 |
| authorships[0].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | University of Malaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rafidah Md Noor |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Centre for Mobile Cloud Computing, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[1].author.id | https://openalex.org/A5000517801 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Nadia Bella Gustiani Rasyidi |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I33849332 |
| authorships[1].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | University of Malaya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nadia Bella Gustiani Rasyidi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[2].author.id | https://openalex.org/A5002386592 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6370-0640 |
| authorships[2].author.display_name | Tarak Nandy |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I33849332 |
| authorships[2].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | University of Malaya |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tarak Nandy |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[3].author.id | https://openalex.org/A5103239222 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Raenu Kolandaisamy |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I55285296 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur 56000, Malaysia |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I33849332 |
| authorships[3].affiliations[1].raw_affiliation_string | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I55285296 |
| authorships[3].institutions[0].ror | https://ror.org/019787q29 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I55285296 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | UCSI University |
| authorships[3].institutions[1].id | https://openalex.org/I33849332 |
| authorships[3].institutions[1].ror | https://ror.org/00rzspn62 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I33849332 |
| authorships[3].institutions[1].country_code | MY |
| authorships[3].institutions[1].display_name | University of Malaya |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Raenu Kolandaisamy |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia, Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur 56000, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2071-1050/13/1/225/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2595172197, https://openalex.org/W2084856301, https://openalex.org/W2127970246, https://openalex.org/W2885125400, https://openalex.org/W1989889224, https://openalex.org/W4382618745, https://openalex.org/W1973775000, https://openalex.org/W2748922771, https://openalex.org/W1987128138, https://openalex.org/W4286521439 |
| cited_by_count | 25 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/su13010225 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S10134376 |
| best_oa_location.source.issn | 2071-1050 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2071-1050 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Sustainability |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2071-1050/13/1/225/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sustainability |
| best_oa_location.landing_page_url | https://doi.org/10.3390/su13010225 |
| primary_location.id | doi:10.3390/su13010225 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S10134376 |
| primary_location.source.issn | 2071-1050 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2071-1050 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Sustainability |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2071-1050/13/1/225/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sustainability |
| primary_location.landing_page_url | https://doi.org/10.3390/su13010225 |
| publication_date | 2020-12-29 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2569514139, https://openalex.org/W2980629337, https://openalex.org/W2949019951, https://openalex.org/W2887050416, https://openalex.org/W1991401171, https://openalex.org/W2069929199, https://openalex.org/W3015464208, https://openalex.org/W3081596797, https://openalex.org/W2550738620, https://openalex.org/W2590129651, https://openalex.org/W2951493167, https://openalex.org/W2980224728, https://openalex.org/W2941717673, https://openalex.org/W3082848893, https://openalex.org/W3010385219, https://openalex.org/W2898606174, https://openalex.org/W3011311993, https://openalex.org/W2944471439, https://openalex.org/W2999294484, https://openalex.org/W3018145325, https://openalex.org/W2753998654, https://openalex.org/W2913356090, https://openalex.org/W2955235824, https://openalex.org/W3080633214, https://openalex.org/W3016480689, https://openalex.org/W3039881443, https://openalex.org/W3009822458, https://openalex.org/W2887075703, https://openalex.org/W2918549544, https://openalex.org/W6739146279, https://openalex.org/W2623190258 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 3, 9, 26, 68, 106, 111, 115, 150, 169 |
| abstract_inverted_index.an | 23, 34 |
| abstract_inverted_index.in | 22, 41, 81 |
| abstract_inverted_index.is | 2, 25, 33, 48, 153 |
| abstract_inverted_index.of | 17, 37, 54, 57, 77, 102, 114, 139, 171, 178 |
| abstract_inverted_index.on | 110, 174 |
| abstract_inverted_index.to | 7, 11, 51, 61, 155 |
| abstract_inverted_index.ANN | 145 |
| abstract_inverted_index.One | 16 |
| abstract_inverted_index.The | 59, 137, 163 |
| abstract_inverted_index.and | 39, 92, 132 |
| abstract_inverted_index.for | 70, 98, 159 |
| abstract_inverted_index.gas | 133 |
| abstract_inverted_index.key | 50 |
| abstract_inverted_index.one | 76 |
| abstract_inverted_index.out | 13 |
| abstract_inverted_index.the | 18, 29, 42, 49, 52, 55, 63, 71, 78, 87, 99, 122, 129, 140, 144, 147, 160, 166, 175 |
| abstract_inverted_index.SVM. | 148 |
| abstract_inverted_index.This | 84 |
| abstract_inverted_index.also | 127 |
| abstract_inverted_index.area | 24 |
| abstract_inverted_index.best | 100 |
| abstract_inverted_index.bus. | 27, 118 |
| abstract_inverted_index.case | 112 |
| abstract_inverted_index.cost | 131 |
| abstract_inverted_index.data | 73 |
| abstract_inverted_index.from | 120, 135 |
| abstract_inverted_index.fuel | 130 |
| abstract_inverted_index.idea | 47 |
| abstract_inverted_index.mass | 19 |
| abstract_inverted_index.rate | 109 |
| abstract_inverted_index.that | 143 |
| abstract_inverted_index.this | 125 |
| abstract_inverted_index.time | 104 |
| abstract_inverted_index.used | 21, 80, 154 |
| abstract_inverted_index.uses | 86 |
| abstract_inverted_index.ways | 60 |
| abstract_inverted_index.with | 105, 168 |
| abstract_inverted_index.(ANN) | 91 |
| abstract_inverted_index.(SVM) | 96 |
| abstract_inverted_index.Apart | 119 |
| abstract_inverted_index.Using | 45 |
| abstract_inverted_index.carry | 12 |
| abstract_inverted_index.daily | 14 |
| abstract_inverted_index.error | 108 |
| abstract_inverted_index.field | 177 |
| abstract_inverted_index.lower | 107 |
| abstract_inverted_index.paper | 85 |
| abstract_inverted_index.range | 170 |
| abstract_inverted_index.shows | 142 |
| abstract_inverted_index.smart | 30, 46 |
| abstract_inverted_index.study | 113, 126 |
| abstract_inverted_index.time, | 124 |
| abstract_inverted_index.vital | 4 |
| abstract_inverted_index.Neural | 89 |
| abstract_inverted_index.Public | 0 |
| abstract_inverted_index.Vector | 94 |
| abstract_inverted_index.become | 67 |
| abstract_inverted_index.chosen | 161 |
| abstract_inverted_index.enable | 8 |
| abstract_inverted_index.extend | 165 |
| abstract_inverted_index.future | 172 |
| abstract_inverted_index.routes | 158 |
| abstract_inverted_index.study. | 179 |
| abstract_inverted_index.system | 66, 152 |
| abstract_inverted_index.travel | 103, 123 |
| abstract_inverted_index.Machine | 95 |
| abstract_inverted_index.Network | 90 |
| abstract_inverted_index.Support | 93 |
| abstract_inverted_index.Things. | 58 |
| abstract_inverted_index.answers | 79 |
| abstract_inverted_index.concept | 32 |
| abstract_inverted_index.improve | 62 |
| abstract_inverted_index.machine | 82 |
| abstract_inverted_index.service | 5 |
| abstract_inverted_index.shuttle | 117 |
| abstract_inverted_index.system. | 44 |
| abstract_inverted_index.Internet | 56 |
| abstract_inverted_index.analysis | 138 |
| abstract_inverted_index.emission | 134 |
| abstract_inverted_index.provided | 6 |
| abstract_inverted_index.strategy | 40 |
| abstract_inverted_index.suitable | 157 |
| abstract_inverted_index.Moreover, | 28 |
| abstract_inverted_index.algorithm | 97 |
| abstract_inverted_index.analytics | 74 |
| abstract_inverted_index.community | 10 |
| abstract_inverted_index.considers | 128 |
| abstract_inverted_index.learning. | 83 |
| abstract_inverted_index.recommend | 156 |
| abstract_inverted_index.scenario. | 162 |
| abstract_inverted_index.solution, | 75 |
| abstract_inverted_index.Artificial | 88 |
| abstract_inverted_index.bottleneck | 69 |
| abstract_inverted_index.directions | 173 |
| abstract_inverted_index.discussion | 167 |
| abstract_inverted_index.experiment | 141 |
| abstract_inverted_index.integrated | 35 |
| abstract_inverted_index.management | 64 |
| abstract_inverted_index.predicting | 121 |
| abstract_inverted_index.prediction | 101 |
| abstract_inverted_index.stipulated | 176 |
| abstract_inverted_index.technology | 38 |
| abstract_inverted_index.university | 116 |
| abstract_inverted_index.activities. | 15 |
| abstract_inverted_index.application | 36, 53 |
| abstract_inverted_index.experiments | 164 |
| abstract_inverted_index.recommender | 151 |
| abstract_inverted_index.traditional | 72 |
| abstract_inverted_index.Furthermore, | 149 |
| abstract_inverted_index.outperformed | 146 |
| abstract_inverted_index.transportation | 1, 31, 43, 65 |
| abstract_inverted_index.transportation. | 136 |
| abstract_inverted_index.transportations | 20 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5103239222, https://openalex.org/A5002386592, https://openalex.org/A5017116281 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I33849332, https://openalex.org/I55285296 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.8742329 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |