Can Artificial Intelligence Educate Patients? Comparative Analysis of ChatGPT and DeepSeek Models in Meniscus Injuries Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/healthcare13222980
Background: Meniscus injuries are among the most common traumatic and degenerative conditions of the knee joint. Patient education plays a critical role in treatment adherence, surgical preparation, and postoperative rehabilitation. The use of artificial intelligence (AI)-based large language models (LLMs) is rapidly increasing in healthcare. This study aimed to compare the quality and readability of responses to frequently asked patient questions about meniscus injuries generated by ChatGPT-5 and DeepSeek R1. Materials and Methods: Twelve frequently asked questions regarding the etiology, symptoms, diagnosis, imaging, and treatment of meniscus injuries were presented to both AI models. The responses were independently evaluated by two experienced orthopedic surgeons using a response rating system and a 4-point Likert scale to assess accuracy, clarity, comprehensiveness, and consistency. Readability was analyzed using the Flesch–Kincaid Reading Ease Score (FRES) and the Flesch–Kincaid Grade Level (FKGL). Interrater reliability was determined using intraclass correlation coefficients (ICCs). Results: DeepSeek performed significantly better than ChatGPT in the response rating system (p = 0.017) and achieved higher scores for comprehensiveness on the 4-point Likert scale (p = 0.005). No significant differences were observed between the two models in terms of accuracy, clarity, or consistency (p > 0.05). Both models produced comparable readability scores (p > 0.05), corresponding to a high-school reading level. Conclusions: Both ChatGPT and DeepSeek show promise as supportive tools for educating patients about meniscus injuries. While DeepSeek demonstrated higher overall content quality, both models generated understandable information suitable for general patient education. Further refinement is needed to improve clarity and accessibility, ensuring that AI-based materials are appropriate for diverse patient populations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/healthcare13222980
- https://www.mdpi.com/2227-9032/13/22/2980/pdf?version=1763620752
- OA Status
- gold
- References
- 29
- OpenAlex ID
- https://openalex.org/W7106120225
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106120225Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/healthcare13222980Digital Object Identifier
- Title
-
Can Artificial Intelligence Educate Patients? Comparative Analysis of ChatGPT and DeepSeek Models in Meniscus InjuriesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-20Full publication date if available
- Authors
-
Bahri bozgeyik, Erman Öğümsöğütlü, Erman ÖğümsöğütlüList of authors in order
- Landing page
-
https://doi.org/10.3390/healthcare13222980Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-9032/13/22/2980/pdf?version=1763620752Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-9032/13/22/2980/pdf?version=1763620752Direct OA link when available
- Concepts
-
Readability, Likert scale, Intraclass correlation, Inter-rater reliability, CLARITY, Meniscus, Rating scale, Physical therapy, Orthopedic surgery, Consistency (knowledge bases), Scale (ratio), Reliability (semiconductor), Reading (process), Medicine, Usability, Medical physics, Psychology, Artificial intelligence, Quality (philosophy), Writing assessment, Physical medicine and rehabilitation, Computer science, Applied psychology, Medical education, Osteoarthritis, MEDLINE, Capsulorhexis, Evidence-based medicine, Cronbach's alpha, Patient educationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
Full payload
| id | https://openalex.org/W7106120225 |
|---|---|
| doi | https://doi.org/10.3390/healthcare13222980 |
| ids.doi | https://doi.org/10.3390/healthcare13222980 |
| ids.openalex | https://openalex.org/W7106120225 |
| fwci | 0.0 |
| type | article |
| title | Can Artificial Intelligence Educate Patients? Comparative Analysis of ChatGPT and DeepSeek Models in Meniscus Injuries |
| biblio.issue | 22 |
| biblio.volume | 13 |
| biblio.last_page | 2980 |
| biblio.first_page | 2980 |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9845004081726074 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T12574 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.0012373042991384864 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2714 |
| topics[1].subfield.display_name | Family Practice |
| topics[1].display_name | Clinical Reasoning and Diagnostic Skills |
| topics[2].id | https://openalex.org/T10442 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.0010816431604325771 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Knee injuries and reconstruction techniques |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C2778143727 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8596994876861572 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820650 |
| concepts[0].display_name | Readability |
| concepts[1].id | https://openalex.org/C105776082 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6848899126052856 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q617473 |
| concepts[1].display_name | Likert scale |
| concepts[2].id | https://openalex.org/C104709138 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6069583892822266 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1671540 |
| concepts[2].display_name | Intraclass correlation |
| concepts[3].id | https://openalex.org/C61863361 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5526869297027588 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q470749 |
| concepts[3].display_name | Inter-rater reliability |
| concepts[4].id | https://openalex.org/C2777146004 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5517303943634033 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q14949826 |
| concepts[4].display_name | CLARITY |
| concepts[5].id | https://openalex.org/C189178095 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5430017113685608 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q15834833 |
| concepts[5].display_name | Meniscus |
| concepts[6].id | https://openalex.org/C83849319 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5317933559417725 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7295720 |
| concepts[6].display_name | Rating scale |
| concepts[7].id | https://openalex.org/C1862650 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5136614441871643 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q186005 |
| concepts[7].display_name | Physical therapy |
| concepts[8].id | https://openalex.org/C68312169 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5077090859413147 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q216685 |
| concepts[8].display_name | Orthopedic surgery |
| concepts[9].id | https://openalex.org/C2776436953 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49465808272361755 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[9].display_name | Consistency (knowledge bases) |
| concepts[10].id | https://openalex.org/C2778755073 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4643814265727997 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[10].display_name | Scale (ratio) |
| concepts[11].id | https://openalex.org/C43214815 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4571090638637543 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[11].display_name | Reliability (semiconductor) |
| concepts[12].id | https://openalex.org/C554936623 |
| concepts[12].level | 2 |
| concepts[12].score | 0.43525487184524536 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q199657 |
| concepts[12].display_name | Reading (process) |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.42990022897720337 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C170130773 |
| concepts[14].level | 2 |
| concepts[14].score | 0.42823290824890137 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q216378 |
| concepts[14].display_name | Usability |
| concepts[15].id | https://openalex.org/C19527891 |
| concepts[15].level | 1 |
| concepts[15].score | 0.40820229053497314 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[15].display_name | Medical physics |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.39706408977508545 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C154945302 |
| concepts[17].level | 1 |
| concepts[17].score | 0.37606966495513916 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[17].display_name | Artificial intelligence |
| concepts[18].id | https://openalex.org/C2779530757 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3735322654247284 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[18].display_name | Quality (philosophy) |
| concepts[19].id | https://openalex.org/C2777898490 |
| concepts[19].level | 2 |
| concepts[19].score | 0.33481118083000183 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q17157236 |
| concepts[19].display_name | Writing assessment |
| concepts[20].id | https://openalex.org/C99508421 |
| concepts[20].level | 1 |
| concepts[20].score | 0.32064181566238403 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[20].display_name | Physical medicine and rehabilitation |
| concepts[21].id | https://openalex.org/C41008148 |
| concepts[21].level | 0 |
| concepts[21].score | 0.3143727779388428 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[21].display_name | Computer science |
| concepts[22].id | https://openalex.org/C75630572 |
| concepts[22].level | 1 |
| concepts[22].score | 0.2860065698623657 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q538904 |
| concepts[22].display_name | Applied psychology |
| concepts[23].id | https://openalex.org/C509550671 |
| concepts[23].level | 1 |
| concepts[23].score | 0.28085386753082275 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q126945 |
| concepts[23].display_name | Medical education |
| concepts[24].id | https://openalex.org/C2776164576 |
| concepts[24].level | 3 |
| concepts[24].score | 0.2742162048816681 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q62736 |
| concepts[24].display_name | Osteoarthritis |
| concepts[25].id | https://openalex.org/C2779473830 |
| concepts[25].level | 2 |
| concepts[25].score | 0.26944881677627563 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q1540899 |
| concepts[25].display_name | MEDLINE |
| concepts[26].id | https://openalex.org/C2779996494 |
| concepts[26].level | 4 |
| concepts[26].score | 0.26911452412605286 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q5036403 |
| concepts[26].display_name | Capsulorhexis |
| concepts[27].id | https://openalex.org/C19648533 |
| concepts[27].level | 3 |
| concepts[27].score | 0.26821368932724 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q691640 |
| concepts[27].display_name | Evidence-based medicine |
| concepts[28].id | https://openalex.org/C106906290 |
| concepts[28].level | 3 |
| concepts[28].score | 0.2658180594444275 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q1140909 |
| concepts[28].display_name | Cronbach's alpha |
| concepts[29].id | https://openalex.org/C2777929519 |
| concepts[29].level | 2 |
| concepts[29].score | 0.2576484680175781 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q7144988 |
| concepts[29].display_name | Patient education |
| keywords[0].id | https://openalex.org/keywords/readability |
| keywords[0].score | 0.8596994876861572 |
| keywords[0].display_name | Readability |
| keywords[1].id | https://openalex.org/keywords/likert-scale |
| keywords[1].score | 0.6848899126052856 |
| keywords[1].display_name | Likert scale |
| keywords[2].id | https://openalex.org/keywords/intraclass-correlation |
| keywords[2].score | 0.6069583892822266 |
| keywords[2].display_name | Intraclass correlation |
| keywords[3].id | https://openalex.org/keywords/inter-rater-reliability |
| keywords[3].score | 0.5526869297027588 |
| keywords[3].display_name | Inter-rater reliability |
| keywords[4].id | https://openalex.org/keywords/clarity |
| keywords[4].score | 0.5517303943634033 |
| keywords[4].display_name | CLARITY |
| keywords[5].id | https://openalex.org/keywords/meniscus |
| keywords[5].score | 0.5430017113685608 |
| keywords[5].display_name | Meniscus |
| keywords[6].id | https://openalex.org/keywords/rating-scale |
| keywords[6].score | 0.5317933559417725 |
| keywords[6].display_name | Rating scale |
| keywords[7].id | https://openalex.org/keywords/orthopedic-surgery |
| keywords[7].score | 0.5077090859413147 |
| keywords[7].display_name | Orthopedic surgery |
| keywords[8].id | https://openalex.org/keywords/consistency |
| keywords[8].score | 0.49465808272361755 |
| keywords[8].display_name | Consistency (knowledge bases) |
| language | en |
| locations[0].id | doi:10.3390/healthcare13222980 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210214101 |
| locations[0].source.issn | 2227-9032 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-9032 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Healthcare |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-9032/13/22/2980/pdf?version=1763620752 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Healthcare |
| locations[0].landing_page_url | https://doi.org/10.3390/healthcare13222980 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A3133865927 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9832-0648 |
| authorships[0].author.display_name | Bahri bozgeyik |
| authorships[0].countries | TR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59738393 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Orthopaedics and Traumatology, Faculty of Medicine, Gaziantep University, Gaziantep 27000, Turkey |
| authorships[0].institutions[0].id | https://openalex.org/I59738393 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/020vvc407 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59738393 |
| authorships[0].institutions[0].country_code | TR |
| authorships[0].institutions[0].display_name | Gaziantep University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bahri Bozgeyik |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Orthopaedics and Traumatology, Faculty of Medicine, Gaziantep University, Gaziantep 27000, Turkey |
| authorships[1].author.id | https://openalex.org/A4208619237 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1835-323X |
| authorships[1].author.display_name | Erman Öğümsöğütlü |
| authorships[1].affiliations[0].raw_affiliation_string | Clinic of Orthopaedic and Traumatology, Yalova Education and Research Hospital, Yalova 77200, Turkey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Erman Öğümsöğütlü |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Clinic of Orthopaedic and Traumatology, Yalova Education and Research Hospital, Yalova 77200, Turkey |
| authorships[2].author.id | https://openalex.org/A4208619237 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1835-323X |
| authorships[2].author.display_name | Erman Öğümsöğütlü |
| authorships[2].countries | TR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I40790370 |
| authorships[2].affiliations[0].raw_affiliation_string | Clinic of Orthopaedic Surgery, Yalova Education and Research Hospital, Yalova 77100, Turkey |
| authorships[2].institutions[0].id | https://openalex.org/I40790370 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/01x18ax09 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I40790370 |
| authorships[2].institutions[0].country_code | TR |
| authorships[2].institutions[0].display_name | Yalova University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Erman Öğümsöğütlü |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Clinic of Orthopaedic Surgery, Yalova Education and Research Hospital, Yalova 77100, Turkey |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-9032/13/22/2980/pdf?version=1763620752 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-20T00:00:00 |
| display_name | Can Artificial Intelligence Educate Patients? Comparative Analysis of ChatGPT and DeepSeek Models in Meniscus Injuries |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9845004081726074 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/healthcare13222980 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210214101 |
| best_oa_location.source.issn | 2227-9032 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-9032 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Healthcare |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-9032/13/22/2980/pdf?version=1763620752 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Healthcare |
| best_oa_location.landing_page_url | https://doi.org/10.3390/healthcare13222980 |
| primary_location.id | doi:10.3390/healthcare13222980 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210214101 |
| primary_location.source.issn | 2227-9032 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-9032 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Healthcare |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-9032/13/22/2980/pdf?version=1763620752 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Healthcare |
| primary_location.landing_page_url | https://doi.org/10.3390/healthcare13222980 |
| publication_date | 2025-11-20 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2003328208, https://openalex.org/W2613026238, https://openalex.org/W4323050332, https://openalex.org/W4384561707, https://openalex.org/W4411055740, https://openalex.org/W4404301296, https://openalex.org/W4391136726, https://openalex.org/W1976013449, https://openalex.org/W4393289861, https://openalex.org/W4384499300, https://openalex.org/W4410936371, https://openalex.org/W1967390364, https://openalex.org/W1507711477, https://openalex.org/W2337155942, https://openalex.org/W4412043430, https://openalex.org/W4413112172, https://openalex.org/W4412046732, https://openalex.org/W4410988545, https://openalex.org/W4366603527, https://openalex.org/W3131540942, https://openalex.org/W4411463172, https://openalex.org/W4410331119, https://openalex.org/W3184049543, https://openalex.org/W2143386650, https://openalex.org/W4405769224, https://openalex.org/W2810661566, https://openalex.org/W4220957945, https://openalex.org/W4412774982, https://openalex.org/W4414295927 |
| referenced_works_count | 29 |
| abstract_inverted_index.= | 159, 173 |
| abstract_inverted_index.a | 19, 105, 110, 205 |
| abstract_inverted_index.(p | 158, 172, 191, 200 |
| abstract_inverted_index.AI | 92 |
| abstract_inverted_index.No | 175 |
| abstract_inverted_index.as | 216 |
| abstract_inverted_index.by | 65, 99 |
| abstract_inverted_index.in | 22, 43, 153, 184 |
| abstract_inverted_index.is | 40, 244 |
| abstract_inverted_index.of | 12, 32, 54, 85, 186 |
| abstract_inverted_index.on | 167 |
| abstract_inverted_index.or | 189 |
| abstract_inverted_index.to | 48, 56, 90, 114, 204, 246 |
| abstract_inverted_index.R1. | 69 |
| abstract_inverted_index.The | 30, 94 |
| abstract_inverted_index.and | 9, 27, 52, 67, 71, 83, 109, 119, 131, 161, 212, 249 |
| abstract_inverted_index.are | 3, 255 |
| abstract_inverted_index.for | 165, 219, 238, 257 |
| abstract_inverted_index.the | 5, 13, 50, 78, 125, 132, 154, 168, 181 |
| abstract_inverted_index.two | 100, 182 |
| abstract_inverted_index.use | 31 |
| abstract_inverted_index.was | 122, 139 |
| abstract_inverted_index.> | 192, 201 |
| abstract_inverted_index.Both | 194, 210 |
| abstract_inverted_index.Ease | 128 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.both | 91, 232 |
| abstract_inverted_index.knee | 14 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.role | 21 |
| abstract_inverted_index.show | 214 |
| abstract_inverted_index.than | 151 |
| abstract_inverted_index.that | 252 |
| abstract_inverted_index.were | 88, 96, 178 |
| abstract_inverted_index.Grade | 134 |
| abstract_inverted_index.Level | 135 |
| abstract_inverted_index.Score | 129 |
| abstract_inverted_index.While | 225 |
| abstract_inverted_index.about | 61, 222 |
| abstract_inverted_index.aimed | 47 |
| abstract_inverted_index.among | 4 |
| abstract_inverted_index.asked | 58, 75 |
| abstract_inverted_index.large | 36 |
| abstract_inverted_index.plays | 18 |
| abstract_inverted_index.scale | 113, 171 |
| abstract_inverted_index.study | 46 |
| abstract_inverted_index.terms | 185 |
| abstract_inverted_index.tools | 218 |
| abstract_inverted_index.using | 104, 124, 141 |
| abstract_inverted_index.(FRES) | 130 |
| abstract_inverted_index.(LLMs) | 39 |
| abstract_inverted_index.0.017) | 160 |
| abstract_inverted_index.0.05), | 202 |
| abstract_inverted_index.0.05). | 193 |
| abstract_inverted_index.Likert | 112, 170 |
| abstract_inverted_index.Twelve | 73 |
| abstract_inverted_index.assess | 115 |
| abstract_inverted_index.better | 150 |
| abstract_inverted_index.common | 7 |
| abstract_inverted_index.higher | 163, 228 |
| abstract_inverted_index.joint. | 15 |
| abstract_inverted_index.level. | 208 |
| abstract_inverted_index.models | 38, 183, 195, 233 |
| abstract_inverted_index.needed | 245 |
| abstract_inverted_index.rating | 107, 156 |
| abstract_inverted_index.scores | 164, 199 |
| abstract_inverted_index.system | 108, 157 |
| abstract_inverted_index.(FKGL). | 136 |
| abstract_inverted_index.(ICCs). | 145 |
| abstract_inverted_index.0.005). | 174 |
| abstract_inverted_index.4-point | 111, 169 |
| abstract_inverted_index.ChatGPT | 152, 211 |
| abstract_inverted_index.Further | 242 |
| abstract_inverted_index.Patient | 16 |
| abstract_inverted_index.Reading | 127 |
| abstract_inverted_index.between | 180 |
| abstract_inverted_index.clarity | 248 |
| abstract_inverted_index.compare | 49 |
| abstract_inverted_index.content | 230 |
| abstract_inverted_index.diverse | 258 |
| abstract_inverted_index.general | 239 |
| abstract_inverted_index.improve | 247 |
| abstract_inverted_index.models. | 93 |
| abstract_inverted_index.overall | 229 |
| abstract_inverted_index.patient | 59, 240, 259 |
| abstract_inverted_index.promise | 215 |
| abstract_inverted_index.quality | 51 |
| abstract_inverted_index.rapidly | 41 |
| abstract_inverted_index.reading | 207 |
| abstract_inverted_index.AI-based | 253 |
| abstract_inverted_index.DeepSeek | 68, 147, 213, 226 |
| abstract_inverted_index.Meniscus | 1 |
| abstract_inverted_index.Methods: | 72 |
| abstract_inverted_index.Results: | 146 |
| abstract_inverted_index.achieved | 162 |
| abstract_inverted_index.analyzed | 123 |
| abstract_inverted_index.clarity, | 117, 188 |
| abstract_inverted_index.critical | 20 |
| abstract_inverted_index.ensuring | 251 |
| abstract_inverted_index.imaging, | 82 |
| abstract_inverted_index.injuries | 2, 63, 87 |
| abstract_inverted_index.language | 37 |
| abstract_inverted_index.meniscus | 62, 86, 223 |
| abstract_inverted_index.observed | 179 |
| abstract_inverted_index.patients | 221 |
| abstract_inverted_index.produced | 196 |
| abstract_inverted_index.quality, | 231 |
| abstract_inverted_index.response | 106, 155 |
| abstract_inverted_index.suitable | 237 |
| abstract_inverted_index.surgeons | 103 |
| abstract_inverted_index.surgical | 25 |
| abstract_inverted_index.ChatGPT-5 | 66 |
| abstract_inverted_index.Materials | 70 |
| abstract_inverted_index.accuracy, | 116, 187 |
| abstract_inverted_index.educating | 220 |
| abstract_inverted_index.education | 17 |
| abstract_inverted_index.etiology, | 79 |
| abstract_inverted_index.evaluated | 98 |
| abstract_inverted_index.generated | 64, 234 |
| abstract_inverted_index.injuries. | 224 |
| abstract_inverted_index.materials | 254 |
| abstract_inverted_index.performed | 148 |
| abstract_inverted_index.presented | 89 |
| abstract_inverted_index.questions | 60, 76 |
| abstract_inverted_index.regarding | 77 |
| abstract_inverted_index.responses | 55, 95 |
| abstract_inverted_index.symptoms, | 80 |
| abstract_inverted_index.traumatic | 8 |
| abstract_inverted_index.treatment | 23, 84 |
| abstract_inverted_index.(AI)-based | 35 |
| abstract_inverted_index.Interrater | 137 |
| abstract_inverted_index.adherence, | 24 |
| abstract_inverted_index.artificial | 33 |
| abstract_inverted_index.comparable | 197 |
| abstract_inverted_index.conditions | 11 |
| abstract_inverted_index.determined | 140 |
| abstract_inverted_index.diagnosis, | 81 |
| abstract_inverted_index.education. | 241 |
| abstract_inverted_index.frequently | 57, 74 |
| abstract_inverted_index.increasing | 42 |
| abstract_inverted_index.intraclass | 142 |
| abstract_inverted_index.orthopedic | 102 |
| abstract_inverted_index.refinement | 243 |
| abstract_inverted_index.supportive | 217 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Readability | 121 |
| abstract_inverted_index.appropriate | 256 |
| abstract_inverted_index.consistency | 190 |
| abstract_inverted_index.correlation | 143 |
| abstract_inverted_index.differences | 177 |
| abstract_inverted_index.experienced | 101 |
| abstract_inverted_index.healthcare. | 44 |
| abstract_inverted_index.high-school | 206 |
| abstract_inverted_index.information | 236 |
| abstract_inverted_index.readability | 53, 198 |
| abstract_inverted_index.reliability | 138 |
| abstract_inverted_index.significant | 176 |
| abstract_inverted_index.Conclusions: | 209 |
| abstract_inverted_index.coefficients | 144 |
| abstract_inverted_index.consistency. | 120 |
| abstract_inverted_index.degenerative | 10 |
| abstract_inverted_index.demonstrated | 227 |
| abstract_inverted_index.intelligence | 34 |
| abstract_inverted_index.populations. | 260 |
| abstract_inverted_index.preparation, | 26 |
| abstract_inverted_index.corresponding | 203 |
| abstract_inverted_index.independently | 97 |
| abstract_inverted_index.postoperative | 28 |
| abstract_inverted_index.significantly | 149 |
| abstract_inverted_index.accessibility, | 250 |
| abstract_inverted_index.understandable | 235 |
| abstract_inverted_index.rehabilitation. | 29 |
| abstract_inverted_index.Flesch–Kincaid | 126, 133 |
| abstract_inverted_index.comprehensiveness | 166 |
| abstract_inverted_index.comprehensiveness, | 118 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.74287932 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |