Can GPT-4 Help Detect Quit Vaping Intentions? An Exploration of Automatic Data Annotation Approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.00167
In recent years, the United States has witnessed a significant surge in the popularity of vaping or e-cigarette use, leading to a notable rise in cases of e-cigarette and vaping use-associated lung injury (EVALI) that caused hospitalizations and fatalities during the EVALI outbreak in 2019, highlighting the urgency to comprehend vaping behaviors and develop effective strategies for cessation. Due to the ubiquity of social media platforms, over 4.7 billion users worldwide use them for connectivity, communications, news, and entertainment with a significant portion of the discourse related to health, thereby establishing social media data as an invaluable organic data resource for public health research. In this study, we extracted a sample dataset from one vaping sub-community on Reddit to analyze users' quit-vaping intentions. Leveraging OpenAI's latest large language model GPT-4 for sentence-level quit vaping intention detection, this study compares the outcomes of this model against layman and clinical expert annotations. Using different prompting strategies such as zero-shot, one-shot, few-shot and chain-of-thought prompting, we developed 8 prompts with varying levels of detail to explain the task to GPT-4 and also evaluated the performance of the strategies against each other. These preliminary findings emphasize the potential of GPT-4 in social media data analysis, especially in identifying users' subtle intentions that may elude human detection.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.00167
- https://arxiv.org/pdf/2407.00167
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400267137
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400267137Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.00167Digital Object Identifier
- Title
-
Can GPT-4 Help Detect Quit Vaping Intentions? An Exploration of Automatic Data Annotation ApproachWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-28Full publication date if available
- Authors
-
Sai Krishna Revanth Vuruma, Dezhi Wu, Saborny Sen Gupta, Lucas Aust, Valerie Lookingbill, Wyatt Bellamy, Y. Ren, Erin Kasson, Li‐Shiun Chen, Patricia Cavazos‐Rehg, Dian Hu, Ming HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.00167Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.00167Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.00167Direct OA link when available
- Concepts
-
Annotation, Computer science, Psychology, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400267137 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.00167 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.00167 |
| ids.openalex | https://openalex.org/W4400267137 |
| fwci | |
| type | preprint |
| title | Can GPT-4 Help Detect Quit Vaping Intentions? An Exploration of Automatic Data Annotation Approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11674 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.5889000296592712 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Sports Analytics and Performance |
| topics[1].id | https://openalex.org/T11326 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.5821999907493591 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776321320 |
| concepts[0].level | 2 |
| concepts[0].score | 0.769397497177124 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[0].display_name | Annotation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5361744165420532 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C15744967 |
| concepts[2].level | 0 |
| concepts[2].score | 0.40733039379119873 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[2].display_name | Psychology |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.2675105631351471 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/annotation |
| keywords[0].score | 0.769397497177124 |
| keywords[0].display_name | Annotation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5361744165420532 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/psychology |
| keywords[2].score | 0.40733039379119873 |
| keywords[2].display_name | Psychology |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.2675105631351471 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.00167 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.00167 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.00167 |
| locations[1].id | doi:10.48550/arxiv.2407.00167 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.00167 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5092489810 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-3741-9343 |
| authorships[0].author.display_name | Sai Krishna Revanth Vuruma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vuruma, Sai Krishna Revanth |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080246841 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3554-1136 |
| authorships[1].author.display_name | Dezhi Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Dezhi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113275906 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Saborny Sen Gupta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gupta, Saborny Sen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5097358282 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Lucas Aust |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aust, Lucas |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5005306539 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1453-2633 |
| authorships[4].author.display_name | Valerie Lookingbill |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lookingbill, Valerie |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5099881251 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Wyatt Bellamy |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bellamy, Wyatt |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5034702056 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4571-9046 |
| authorships[6].author.display_name | Y. Ren |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ren, Yang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5003327929 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4888-3319 |
| authorships[7].author.display_name | Erin Kasson |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Kasson, Erin |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5063233339 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6762-5054 |
| authorships[8].author.display_name | Li‐Shiun Chen |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chen, Li-Shiun |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5019243136 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3352-1198 |
| authorships[9].author.display_name | Patricia Cavazos‐Rehg |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Cavazos-Rehg, Patricia |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5113204536 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Dian Hu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Hu, Dian |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5010869663 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7367-3626 |
| authorships[11].author.display_name | Ming Huang |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Huang, Ming |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.00167 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-03T00:00:00 |
| display_name | Can GPT-4 Help Detect Quit Vaping Intentions? An Exploration of Automatic Data Annotation Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11674 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.5889000296592712 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Sports Analytics and Performance |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2361861616, https://openalex.org/W2263699433, https://openalex.org/W2377979023, https://openalex.org/W2218034408, https://openalex.org/W2392921965, https://openalex.org/W2358755282, https://openalex.org/W2625833328, https://openalex.org/W1533177136 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.00167 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.00167 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.00167 |
| primary_location.id | pmh:oai:arXiv.org:2407.00167 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.00167 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.00167 |
| publication_date | 2024-06-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.8 | 164 |
| abstract_inverted_index.a | 8, 21, 80, 109 |
| abstract_inverted_index.In | 0, 104 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.as | 94, 155 |
| abstract_inverted_index.in | 11, 24, 43, 196, 202 |
| abstract_inverted_index.of | 14, 26, 62, 83, 141, 169, 182, 194 |
| abstract_inverted_index.on | 116 |
| abstract_inverted_index.or | 16 |
| abstract_inverted_index.to | 20, 48, 59, 87, 118, 171, 175 |
| abstract_inverted_index.we | 107, 162 |
| abstract_inverted_index.4.7 | 67 |
| abstract_inverted_index.Due | 58 |
| abstract_inverted_index.and | 28, 37, 52, 77, 146, 159, 177 |
| abstract_inverted_index.for | 56, 73, 100, 130 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.may | 208 |
| abstract_inverted_index.one | 113 |
| abstract_inverted_index.the | 3, 12, 40, 46, 60, 84, 139, 173, 180, 183, 192 |
| abstract_inverted_index.use | 71 |
| abstract_inverted_index.also | 178 |
| abstract_inverted_index.data | 93, 98, 199 |
| abstract_inverted_index.each | 186 |
| abstract_inverted_index.from | 112 |
| abstract_inverted_index.lung | 31 |
| abstract_inverted_index.over | 66 |
| abstract_inverted_index.quit | 132 |
| abstract_inverted_index.rise | 23 |
| abstract_inverted_index.such | 154 |
| abstract_inverted_index.task | 174 |
| abstract_inverted_index.that | 34, 207 |
| abstract_inverted_index.them | 72 |
| abstract_inverted_index.this | 105, 136, 142 |
| abstract_inverted_index.use, | 18 |
| abstract_inverted_index.with | 79, 166 |
| abstract_inverted_index.2019, | 44 |
| abstract_inverted_index.EVALI | 41 |
| abstract_inverted_index.GPT-4 | 129, 176, 195 |
| abstract_inverted_index.These | 188 |
| abstract_inverted_index.Using | 150 |
| abstract_inverted_index.cases | 25 |
| abstract_inverted_index.elude | 209 |
| abstract_inverted_index.human | 210 |
| abstract_inverted_index.large | 126 |
| abstract_inverted_index.media | 64, 92, 198 |
| abstract_inverted_index.model | 128, 143 |
| abstract_inverted_index.news, | 76 |
| abstract_inverted_index.study | 137 |
| abstract_inverted_index.surge | 10 |
| abstract_inverted_index.users | 69 |
| abstract_inverted_index.Reddit | 117 |
| abstract_inverted_index.States | 5 |
| abstract_inverted_index.United | 4 |
| abstract_inverted_index.caused | 35 |
| abstract_inverted_index.detail | 170 |
| abstract_inverted_index.during | 39 |
| abstract_inverted_index.expert | 148 |
| abstract_inverted_index.health | 102 |
| abstract_inverted_index.injury | 32 |
| abstract_inverted_index.latest | 125 |
| abstract_inverted_index.layman | 145 |
| abstract_inverted_index.levels | 168 |
| abstract_inverted_index.other. | 187 |
| abstract_inverted_index.public | 101 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.sample | 110 |
| abstract_inverted_index.social | 63, 91, 197 |
| abstract_inverted_index.study, | 106 |
| abstract_inverted_index.subtle | 205 |
| abstract_inverted_index.users' | 120, 204 |
| abstract_inverted_index.vaping | 15, 29, 50, 114, 133 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.(EVALI) | 33 |
| abstract_inverted_index.against | 144, 185 |
| abstract_inverted_index.analyze | 119 |
| abstract_inverted_index.billion | 68 |
| abstract_inverted_index.dataset | 111 |
| abstract_inverted_index.develop | 53 |
| abstract_inverted_index.explain | 172 |
| abstract_inverted_index.health, | 88 |
| abstract_inverted_index.leading | 19 |
| abstract_inverted_index.notable | 22 |
| abstract_inverted_index.organic | 97 |
| abstract_inverted_index.portion | 82 |
| abstract_inverted_index.prompts | 165 |
| abstract_inverted_index.related | 86 |
| abstract_inverted_index.thereby | 89 |
| abstract_inverted_index.urgency | 47 |
| abstract_inverted_index.varying | 167 |
| abstract_inverted_index.OpenAI's | 124 |
| abstract_inverted_index.clinical | 147 |
| abstract_inverted_index.compares | 138 |
| abstract_inverted_index.few-shot | 158 |
| abstract_inverted_index.findings | 190 |
| abstract_inverted_index.language | 127 |
| abstract_inverted_index.outbreak | 42 |
| abstract_inverted_index.outcomes | 140 |
| abstract_inverted_index.resource | 99 |
| abstract_inverted_index.ubiquity | 61 |
| abstract_inverted_index.analysis, | 200 |
| abstract_inverted_index.behaviors | 51 |
| abstract_inverted_index.developed | 163 |
| abstract_inverted_index.different | 151 |
| abstract_inverted_index.discourse | 85 |
| abstract_inverted_index.effective | 54 |
| abstract_inverted_index.emphasize | 191 |
| abstract_inverted_index.evaluated | 179 |
| abstract_inverted_index.extracted | 108 |
| abstract_inverted_index.intention | 134 |
| abstract_inverted_index.one-shot, | 157 |
| abstract_inverted_index.potential | 193 |
| abstract_inverted_index.prompting | 152 |
| abstract_inverted_index.research. | 103 |
| abstract_inverted_index.witnessed | 7 |
| abstract_inverted_index.worldwide | 70 |
| abstract_inverted_index.Leveraging | 123 |
| abstract_inverted_index.cessation. | 57 |
| abstract_inverted_index.comprehend | 49 |
| abstract_inverted_index.detection, | 135 |
| abstract_inverted_index.detection. | 211 |
| abstract_inverted_index.especially | 201 |
| abstract_inverted_index.fatalities | 38 |
| abstract_inverted_index.intentions | 206 |
| abstract_inverted_index.invaluable | 96 |
| abstract_inverted_index.platforms, | 65 |
| abstract_inverted_index.popularity | 13 |
| abstract_inverted_index.prompting, | 161 |
| abstract_inverted_index.strategies | 55, 153, 184 |
| abstract_inverted_index.zero-shot, | 156 |
| abstract_inverted_index.e-cigarette | 17, 27 |
| abstract_inverted_index.identifying | 203 |
| abstract_inverted_index.intentions. | 122 |
| abstract_inverted_index.performance | 181 |
| abstract_inverted_index.preliminary | 189 |
| abstract_inverted_index.quit-vaping | 121 |
| abstract_inverted_index.significant | 9, 81 |
| abstract_inverted_index.annotations. | 149 |
| abstract_inverted_index.establishing | 90 |
| abstract_inverted_index.highlighting | 45 |
| abstract_inverted_index.connectivity, | 74 |
| abstract_inverted_index.entertainment | 78 |
| abstract_inverted_index.sub-community | 115 |
| abstract_inverted_index.sentence-level | 131 |
| abstract_inverted_index.use-associated | 30 |
| abstract_inverted_index.communications, | 75 |
| abstract_inverted_index.chain-of-thought | 160 |
| abstract_inverted_index.hospitalizations | 36 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile |