Can the "Strength of Connections" Account Explain Picture and Word Naming and Categorization Data? Article Swipe
Potter and Faulconer (1975) reported that participants were faster to read words aloud than they were to name pictures, but were faster to categorize pictures than words. They took this as falsification of an account in which picture representations have to be translated to their verbal counterparts before semantic information about the object could be activated, and corroboration of an account that claimed that both picture and verbal representations have direct access to semantics. Their direct access account does sufficiently explain the findings, but there are other plausible accounts that could better explain the specific pattern they found. In the present work, I sought to explain their findings using an alternative account proposed by Besner et al. (2011), which posits that the strength of connections between localist modules vary as a function of use. Besner et al. (2011) found that participants were faster to perform parity judgments on Arabic numerals than on number words, but were equally fast at reading/naming aloud both, a finding that cannot be explained by the received view that frequency effects exist as resting levels of activation in localist modules, but can be explained by the strength of connections (SOC) account. The present experiments replicate Potter and Faulconer’s (1975) findings, and also replicate findings by Rogers and Monsell (1995) that show that switching from one task to the other incurs an RT cost. I derived and predicted that these switch costs would be larger in blocks in which the task instructions conflict with the task participants have learned to associate with a stimulus (default set), than in blocks in which task instructions are compatible with the default set. I find data in support of this prediction for words, but not for pictures. Possible reasons for the failure to find the predicted pattern for pictures are briefly discussed.
Related Topics
- Type
- dissertation
- Language
- en
- Landing Page
- http://hdl.handle.net/10012/9169
- http://hdl.handle.net/10012/9169
- OA Status
- green
- References
- 8
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2580625311
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2580625311Canonical identifier for this work in OpenAlex
- Title
-
Can the "Strength of Connections" Account Explain Picture and Word Naming and Categorization Data?Work title
- Type
-
dissertationOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-02-11Full publication date if available
- Authors
-
Sherif SolimanList of authors in order
- Landing page
-
https://hdl.handle.net/10012/9169Publisher landing page
- PDF URL
-
https://hdl.handle.net/10012/9169Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10012/9169Direct OA link when available
- Concepts
-
Categorization, Word (group theory), Natural language processing, Linguistics, Computer science, Psychology, Artificial intelligence, Information retrieval, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2580625311 |
|---|---|
| doi | |
| ids.mag | 2580625311 |
| ids.openalex | https://openalex.org/W2580625311 |
| fwci | |
| type | dissertation |
| title | Can the "Strength of Connections" Account Explain Picture and Word Naming and Categorization Data? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13083 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9947999715805054 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Text Analysis Techniques |
| topics[1].id | https://openalex.org/T10465 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Neurobiology of Language and Bilingualism |
| topics[2].id | https://openalex.org/T10103 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3204 |
| topics[2].subfield.display_name | Developmental and Educational Psychology |
| topics[2].display_name | Reading and Literacy Development |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C94124525 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8651003837585449 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[0].display_name | Categorization |
| concepts[1].id | https://openalex.org/C90805587 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5355603098869324 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[1].display_name | Word (group theory) |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5035061240196228 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C41895202 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4916399121284485 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[3].display_name | Linguistics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43712669610977173 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.40667903423309326 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34733647108078003 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C23123220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.34683722257614136 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[7].display_name | Information retrieval |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.04876205325126648 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/categorization |
| keywords[0].score | 0.8651003837585449 |
| keywords[0].display_name | Categorization |
| keywords[1].id | https://openalex.org/keywords/word |
| keywords[1].score | 0.5355603098869324 |
| keywords[1].display_name | Word (group theory) |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.5035061240196228 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/linguistics |
| keywords[3].score | 0.4916399121284485 |
| keywords[3].display_name | Linguistics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.43712669610977173 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.40667903423309326 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.34733647108078003 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/information-retrieval |
| keywords[7].score | 0.34683722257614136 |
| keywords[7].display_name | Information retrieval |
| keywords[8].id | https://openalex.org/keywords/philosophy |
| keywords[8].score | 0.04876205325126648 |
| keywords[8].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:uwspace.uwaterloo.ca:10012/9169 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401661 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | UWSpace (University of Waterloo) |
| locations[0].source.host_organization | https://openalex.org/I151746483 |
| locations[0].source.host_organization_name | University of Waterloo |
| locations[0].source.host_organization_lineage | https://openalex.org/I151746483 |
| locations[0].license | |
| locations[0].pdf_url | http://hdl.handle.net/10012/9169 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Master Thesis |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://hdl.handle.net/10012/9169 |
| locations[1].id | mag:2580625311 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://uwspace.uwaterloo.ca/handle/10012/9169 |
| authorships[0].author.id | https://openalex.org/A5066281134 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8615-5609 |
| authorships[0].author.display_name | Sherif Soliman |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sherif Soliman |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/10012/9169 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Can the "Strength of Connections" Account Explain Picture and Word Naming and Categorization Data? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T13083 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9947999715805054 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Text Analysis Techniques |
| related_works | https://openalex.org/W2260974469, https://openalex.org/W2149290769, https://openalex.org/W1973098216, https://openalex.org/W119093098, https://openalex.org/W2209618800, https://openalex.org/W2161070585, https://openalex.org/W2041370784, https://openalex.org/W2180070371, https://openalex.org/W2385625176, https://openalex.org/W1768959908, https://openalex.org/W2058343074, https://openalex.org/W104349256, https://openalex.org/W2792585039, https://openalex.org/W1973061965, https://openalex.org/W2153577434, https://openalex.org/W2008931369, https://openalex.org/W3199876072, https://openalex.org/W2120527734, https://openalex.org/W195095989, https://openalex.org/W2035073007 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:uwspace.uwaterloo.ca:10012/9169 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401661 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | UWSpace (University of Waterloo) |
| best_oa_location.source.host_organization | https://openalex.org/I151746483 |
| best_oa_location.source.host_organization_name | University of Waterloo |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I151746483 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://hdl.handle.net/10012/9169 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Master Thesis |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10012/9169 |
| primary_location.id | pmh:oai:uwspace.uwaterloo.ca:10012/9169 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401661 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | UWSpace (University of Waterloo) |
| primary_location.source.host_organization | https://openalex.org/I151746483 |
| primary_location.source.host_organization_name | University of Waterloo |
| primary_location.source.host_organization_lineage | https://openalex.org/I151746483 |
| primary_location.license | |
| primary_location.pdf_url | http://hdl.handle.net/10012/9169 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Master Thesis |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://hdl.handle.net/10012/9169 |
| publication_date | 2015-02-11 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2022963108, https://openalex.org/W2109616123, https://openalex.org/W580591036, https://openalex.org/W2071783141, https://openalex.org/W2021531298, https://openalex.org/W2099157253, https://openalex.org/W1994797618, https://openalex.org/W2228459624 |
| referenced_works_count | 8 |
| abstract_inverted_index.I | 102, 227, 272 |
| abstract_inverted_index.a | 130, 162, 255 |
| abstract_inverted_index.In | 98 |
| abstract_inverted_index.RT | 225 |
| abstract_inverted_index.an | 33, 59, 109, 224 |
| abstract_inverted_index.as | 30, 129, 176 |
| abstract_inverted_index.at | 158 |
| abstract_inverted_index.be | 41, 54, 166, 186, 236 |
| abstract_inverted_index.by | 113, 168, 188, 208 |
| abstract_inverted_index.et | 115, 135 |
| abstract_inverted_index.in | 35, 181, 238, 240, 260, 262, 275 |
| abstract_inverted_index.of | 32, 58, 123, 132, 179, 191, 277 |
| abstract_inverted_index.on | 147, 151 |
| abstract_inverted_index.to | 9, 16, 22, 40, 43, 72, 104, 143, 220, 252, 291 |
| abstract_inverted_index.The | 195 |
| abstract_inverted_index.al. | 116, 136 |
| abstract_inverted_index.and | 1, 56, 66, 200, 204, 210, 229 |
| abstract_inverted_index.are | 85, 266, 298 |
| abstract_inverted_index.but | 19, 83, 154, 184, 282 |
| abstract_inverted_index.can | 185 |
| abstract_inverted_index.for | 280, 284, 288, 296 |
| abstract_inverted_index.not | 283 |
| abstract_inverted_index.one | 218 |
| abstract_inverted_index.the | 51, 81, 93, 99, 121, 169, 189, 221, 242, 247, 269, 289, 293 |
| abstract_inverted_index.They | 27 |
| abstract_inverted_index.also | 205 |
| abstract_inverted_index.both | 64 |
| abstract_inverted_index.data | 274 |
| abstract_inverted_index.does | 78 |
| abstract_inverted_index.fast | 157 |
| abstract_inverted_index.find | 273, 292 |
| abstract_inverted_index.from | 217 |
| abstract_inverted_index.have | 39, 69, 250 |
| abstract_inverted_index.name | 17 |
| abstract_inverted_index.read | 10 |
| abstract_inverted_index.set. | 271 |
| abstract_inverted_index.show | 214 |
| abstract_inverted_index.task | 219, 243, 248, 264 |
| abstract_inverted_index.than | 13, 25, 150, 259 |
| abstract_inverted_index.that | 5, 61, 63, 89, 120, 139, 164, 172, 213, 215, 231 |
| abstract_inverted_index.they | 14, 96 |
| abstract_inverted_index.this | 29, 278 |
| abstract_inverted_index.took | 28 |
| abstract_inverted_index.use. | 133 |
| abstract_inverted_index.vary | 128 |
| abstract_inverted_index.view | 171 |
| abstract_inverted_index.were | 7, 15, 20, 141, 155 |
| abstract_inverted_index.with | 246, 254, 268 |
| abstract_inverted_index.(SOC) | 193 |
| abstract_inverted_index.Their | 74 |
| abstract_inverted_index.about | 50 |
| abstract_inverted_index.aloud | 12, 160 |
| abstract_inverted_index.both, | 161 |
| abstract_inverted_index.cost. | 226 |
| abstract_inverted_index.costs | 234 |
| abstract_inverted_index.could | 53, 90 |
| abstract_inverted_index.exist | 175 |
| abstract_inverted_index.found | 138 |
| abstract_inverted_index.other | 86, 222 |
| abstract_inverted_index.set), | 258 |
| abstract_inverted_index.their | 44, 106 |
| abstract_inverted_index.there | 84 |
| abstract_inverted_index.these | 232 |
| abstract_inverted_index.using | 108 |
| abstract_inverted_index.which | 36, 118, 241, 263 |
| abstract_inverted_index.words | 11 |
| abstract_inverted_index.work, | 101 |
| abstract_inverted_index.would | 235 |
| abstract_inverted_index.(1975) | 3, 202 |
| abstract_inverted_index.(1995) | 212 |
| abstract_inverted_index.(2011) | 137 |
| abstract_inverted_index.Arabic | 148 |
| abstract_inverted_index.Besner | 114, 134 |
| abstract_inverted_index.Potter | 0, 199 |
| abstract_inverted_index.Rogers | 209 |
| abstract_inverted_index.access | 71, 76 |
| abstract_inverted_index.before | 47 |
| abstract_inverted_index.better | 91 |
| abstract_inverted_index.blocks | 239, 261 |
| abstract_inverted_index.cannot | 165 |
| abstract_inverted_index.direct | 70, 75 |
| abstract_inverted_index.faster | 8, 21, 142 |
| abstract_inverted_index.found. | 97 |
| abstract_inverted_index.incurs | 223 |
| abstract_inverted_index.larger | 237 |
| abstract_inverted_index.levels | 178 |
| abstract_inverted_index.number | 152 |
| abstract_inverted_index.object | 52 |
| abstract_inverted_index.parity | 145 |
| abstract_inverted_index.posits | 119 |
| abstract_inverted_index.sought | 103 |
| abstract_inverted_index.switch | 233 |
| abstract_inverted_index.verbal | 45, 67 |
| abstract_inverted_index.words, | 153, 281 |
| abstract_inverted_index.words. | 26 |
| abstract_inverted_index.(2011), | 117 |
| abstract_inverted_index.Monsell | 211 |
| abstract_inverted_index.account | 34, 60, 77, 111 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.briefly | 299 |
| abstract_inverted_index.claimed | 62 |
| abstract_inverted_index.default | 270 |
| abstract_inverted_index.derived | 228 |
| abstract_inverted_index.effects | 174 |
| abstract_inverted_index.equally | 156 |
| abstract_inverted_index.explain | 80, 92, 105 |
| abstract_inverted_index.failure | 290 |
| abstract_inverted_index.finding | 163 |
| abstract_inverted_index.learned | 251 |
| abstract_inverted_index.modules | 127 |
| abstract_inverted_index.pattern | 95, 295 |
| abstract_inverted_index.perform | 144 |
| abstract_inverted_index.picture | 37, 65 |
| abstract_inverted_index.present | 100, 196 |
| abstract_inverted_index.reasons | 287 |
| abstract_inverted_index.resting | 177 |
| abstract_inverted_index.support | 276 |
| abstract_inverted_index.(default | 257 |
| abstract_inverted_index.Possible | 286 |
| abstract_inverted_index.account. | 194 |
| abstract_inverted_index.accounts | 88 |
| abstract_inverted_index.conflict | 245 |
| abstract_inverted_index.findings | 107, 207 |
| abstract_inverted_index.function | 131 |
| abstract_inverted_index.localist | 126, 182 |
| abstract_inverted_index.modules, | 183 |
| abstract_inverted_index.numerals | 149 |
| abstract_inverted_index.pictures | 24, 297 |
| abstract_inverted_index.proposed | 112 |
| abstract_inverted_index.received | 170 |
| abstract_inverted_index.reported | 4 |
| abstract_inverted_index.semantic | 48 |
| abstract_inverted_index.specific | 94 |
| abstract_inverted_index.stimulus | 256 |
| abstract_inverted_index.strength | 122, 190 |
| abstract_inverted_index.Faulconer | 2 |
| abstract_inverted_index.associate | 253 |
| abstract_inverted_index.explained | 167, 187 |
| abstract_inverted_index.findings, | 82, 203 |
| abstract_inverted_index.frequency | 173 |
| abstract_inverted_index.judgments | 146 |
| abstract_inverted_index.pictures, | 18 |
| abstract_inverted_index.pictures. | 285 |
| abstract_inverted_index.plausible | 87 |
| abstract_inverted_index.predicted | 230, 294 |
| abstract_inverted_index.replicate | 198, 206 |
| abstract_inverted_index.switching | 216 |
| abstract_inverted_index.activated, | 55 |
| abstract_inverted_index.activation | 180 |
| abstract_inverted_index.categorize | 23 |
| abstract_inverted_index.compatible | 267 |
| abstract_inverted_index.discussed. | 300 |
| abstract_inverted_index.prediction | 279 |
| abstract_inverted_index.semantics. | 73 |
| abstract_inverted_index.translated | 42 |
| abstract_inverted_index.alternative | 110 |
| abstract_inverted_index.connections | 124, 192 |
| abstract_inverted_index.experiments | 197 |
| abstract_inverted_index.information | 49 |
| abstract_inverted_index.counterparts | 46 |
| abstract_inverted_index.instructions | 244, 265 |
| abstract_inverted_index.participants | 6, 140, 249 |
| abstract_inverted_index.sufficiently | 79 |
| abstract_inverted_index.Faulconer’s | 201 |
| abstract_inverted_index.corroboration | 57 |
| abstract_inverted_index.falsification | 31 |
| abstract_inverted_index.reading/naming | 159 |
| abstract_inverted_index.representations | 38, 68 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5066281134 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |