CANDLE: Decomposing Conditional and Conjunctive Queries for Task-Oriented Dialogue Systems Article Swipe
Aadesh Gupta
,
Kaustubh Dhole
,
Rahul Tarway
,
Swetha Prabhakar
,
Ashish Shrivastava
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2107.03884
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2107.03884
Domain-specific dialogue systems generally determine user intents by relying on sentence level classifiers that mainly focus on single action sentences. Such classifiers are not designed to effectively handle complex queries composed of conditional and sequential clauses that represent multiple actions. We attempt to decompose such queries into smaller single action subqueries that are reasonable for intent classifiers to understand in a dialogue pipeline. We release, CANDLE(Conditional & AND type Expressions), a dataset consisting of 4282 utterances manually tagged with conditional and sequential labels, and demonstrates this decomposition by training two baseline taggers.
Related Topics
Concepts
Computer science
Focus (optics)
Task (project management)
Pipeline (software)
Natural language processing
Sentence
Artificial intelligence
Conditional random field
Action (physics)
Baseline (sea)
Conditional probability
Decomposition
Programming language
Mathematics
Ecology
Economics
Biology
Oceanography
Quantum mechanics
Management
Statistics
Geology
Physics
Optics
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2107.03884
- https://arxiv.org/pdf/2107.03884
- OA Status
- green
- References
- 25
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3181533055
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3181533055Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2107.03884Digital Object Identifier
- Title
-
CANDLE: Decomposing Conditional and Conjunctive Queries for Task-Oriented Dialogue SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-08Full publication date if available
- Authors
-
Aadesh Gupta, Kaustubh Dhole, Rahul Tarway, Swetha Prabhakar, Ashish ShrivastavaList of authors in order
- Landing page
-
https://arxiv.org/abs/2107.03884Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2107.03884Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2107.03884Direct OA link when available
- Concepts
-
Computer science, Focus (optics), Task (project management), Pipeline (software), Natural language processing, Sentence, Artificial intelligence, Conditional random field, Action (physics), Baseline (sea), Conditional probability, Decomposition, Programming language, Mathematics, Ecology, Economics, Biology, Oceanography, Quantum mechanics, Management, Statistics, Geology, Physics, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3181533055 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2107.03884 |
| ids.doi | https://doi.org/10.48550/arxiv.2107.03884 |
| ids.mag | 3181533055 |
| ids.openalex | https://openalex.org/W3181533055 |
| fwci | |
| type | preprint |
| title | CANDLE: Decomposing Conditional and Conjunctive Queries for Task-Oriented Dialogue Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T12031 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9997000098228455 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech and dialogue systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7741844654083252 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C192209626 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6662232875823975 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[1].display_name | Focus (optics) |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6318573951721191 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C43521106 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6012069582939148 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[3].display_name | Pipeline (software) |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5942013263702393 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C2777530160 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5867319107055664 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q41796 |
| concepts[5].display_name | Sentence |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5513998866081238 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C152565575 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5434775948524475 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1124538 |
| concepts[7].display_name | Conditional random field |
| concepts[8].id | https://openalex.org/C2780791683 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5090029239654541 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[8].display_name | Action (physics) |
| concepts[9].id | https://openalex.org/C12725497 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45232802629470825 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[9].display_name | Baseline (sea) |
| concepts[10].id | https://openalex.org/C44492722 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4234573245048523 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q327069 |
| concepts[10].display_name | Conditional probability |
| concepts[11].id | https://openalex.org/C124681953 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41531264781951904 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q339062 |
| concepts[11].display_name | Decomposition |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12950342893600464 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.11145439743995667 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C18903297 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[14].display_name | Ecology |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C111368507 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[17].display_name | Oceanography |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C187736073 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[19].display_name | Management |
| concepts[20].id | https://openalex.org/C105795698 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[20].display_name | Statistics |
| concepts[21].id | https://openalex.org/C127313418 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[21].display_name | Geology |
| concepts[22].id | https://openalex.org/C121332964 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[22].display_name | Physics |
| concepts[23].id | https://openalex.org/C120665830 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[23].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7741844654083252 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/focus |
| keywords[1].score | 0.6662232875823975 |
| keywords[1].display_name | Focus (optics) |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.6318573951721191 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/pipeline |
| keywords[3].score | 0.6012069582939148 |
| keywords[3].display_name | Pipeline (software) |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.5942013263702393 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/sentence |
| keywords[5].score | 0.5867319107055664 |
| keywords[5].display_name | Sentence |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5513998866081238 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/conditional-random-field |
| keywords[7].score | 0.5434775948524475 |
| keywords[7].display_name | Conditional random field |
| keywords[8].id | https://openalex.org/keywords/action |
| keywords[8].score | 0.5090029239654541 |
| keywords[8].display_name | Action (physics) |
| keywords[9].id | https://openalex.org/keywords/baseline |
| keywords[9].score | 0.45232802629470825 |
| keywords[9].display_name | Baseline (sea) |
| keywords[10].id | https://openalex.org/keywords/conditional-probability |
| keywords[10].score | 0.4234573245048523 |
| keywords[10].display_name | Conditional probability |
| keywords[11].id | https://openalex.org/keywords/decomposition |
| keywords[11].score | 0.41531264781951904 |
| keywords[11].display_name | Decomposition |
| keywords[12].id | https://openalex.org/keywords/programming-language |
| keywords[12].score | 0.12950342893600464 |
| keywords[12].display_name | Programming language |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.11145439743995667 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2107.03884 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2107.03884 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2107.03884 |
| locations[1].id | mag:3181533055 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/2107.03884.pdf |
| locations[2].id | doi:10.48550/arxiv.2107.03884 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2107.03884 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5081044989 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Aadesh Gupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aadesh Gupta |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5061120974 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kaustubh Dhole |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kaustubh D. Dhole |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056038858 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rahul Tarway |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rahul Tarway |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5003804727 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Swetha Prabhakar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Swetha Prabhakar |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5002740493 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2465-0708 |
| authorships[4].author.display_name | Ashish Shrivastava |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ashish Shrivastava |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2107.03884 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CANDLE: Decomposing Conditional and Conjunctive Queries for Task-Oriented Dialogue Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2111959374, https://openalex.org/W3094182370, https://openalex.org/W3176530782, https://openalex.org/W2411652523, https://openalex.org/W2251913848, https://openalex.org/W3211701660, https://openalex.org/W2971126690, https://openalex.org/W3102335248, https://openalex.org/W2949437134, https://openalex.org/W2975195127, https://openalex.org/W93363620, https://openalex.org/W2964972381, https://openalex.org/W2308720496, https://openalex.org/W2886624034, https://openalex.org/W2951278025, https://openalex.org/W2950910987, https://openalex.org/W2252105888, https://openalex.org/W2796705611, https://openalex.org/W2251486643, https://openalex.org/W42764203 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2107.03884 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2107.03884 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2107.03884 |
| primary_location.id | pmh:oai:arXiv.org:2107.03884 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2107.03884 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2107.03884 |
| publication_date | 2021-07-08 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2159021374, https://openalex.org/W3098987177, https://openalex.org/W2198508096, https://openalex.org/W3082274269, https://openalex.org/W2963748441, https://openalex.org/W3119478701, https://openalex.org/W2962734475, https://openalex.org/W1557165179, https://openalex.org/W3035599593, https://openalex.org/W2318966529, https://openalex.org/W3023071679, https://openalex.org/W3076515858, https://openalex.org/W2963341956, https://openalex.org/W3098824823, https://openalex.org/W2147880316, https://openalex.org/W2251625217, https://openalex.org/W2838122361, https://openalex.org/W3091355780, https://openalex.org/W6169389, https://openalex.org/W2069906675, https://openalex.org/W3146593460, https://openalex.org/W1623072288, https://openalex.org/W3112618723, https://openalex.org/W2630891245, https://openalex.org/W3045492832 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 60, 70 |
| abstract_inverted_index.We | 40, 63 |
| abstract_inverted_index.by | 7, 87 |
| abstract_inverted_index.in | 59 |
| abstract_inverted_index.of | 31, 73 |
| abstract_inverted_index.on | 9, 16 |
| abstract_inverted_index.to | 25, 42, 57 |
| abstract_inverted_index.AND | 67 |
| abstract_inverted_index.and | 33, 80, 83 |
| abstract_inverted_index.are | 22, 52 |
| abstract_inverted_index.for | 54 |
| abstract_inverted_index.not | 23 |
| abstract_inverted_index.two | 89 |
| abstract_inverted_index.4282 | 74 |
| abstract_inverted_index.Such | 20 |
| abstract_inverted_index.into | 46 |
| abstract_inverted_index.such | 44 |
| abstract_inverted_index.that | 13, 36, 51 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.type | 68 |
| abstract_inverted_index.user | 5 |
| abstract_inverted_index.with | 78 |
| abstract_inverted_index.& | 66 |
| abstract_inverted_index.focus | 15 |
| abstract_inverted_index.level | 11 |
| abstract_inverted_index.action | 18, 49 |
| abstract_inverted_index.handle | 27 |
| abstract_inverted_index.intent | 55 |
| abstract_inverted_index.mainly | 14 |
| abstract_inverted_index.single | 17, 48 |
| abstract_inverted_index.tagged | 77 |
| abstract_inverted_index.attempt | 41 |
| abstract_inverted_index.clauses | 35 |
| abstract_inverted_index.complex | 28 |
| abstract_inverted_index.dataset | 71 |
| abstract_inverted_index.intents | 6 |
| abstract_inverted_index.labels, | 82 |
| abstract_inverted_index.queries | 29, 45 |
| abstract_inverted_index.relying | 8 |
| abstract_inverted_index.smaller | 47 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.actions. | 39 |
| abstract_inverted_index.baseline | 90 |
| abstract_inverted_index.composed | 30 |
| abstract_inverted_index.designed | 24 |
| abstract_inverted_index.dialogue | 1, 61 |
| abstract_inverted_index.manually | 76 |
| abstract_inverted_index.multiple | 38 |
| abstract_inverted_index.release, | 64 |
| abstract_inverted_index.sentence | 10 |
| abstract_inverted_index.taggers. | 91 |
| abstract_inverted_index.training | 88 |
| abstract_inverted_index.decompose | 43 |
| abstract_inverted_index.determine | 4 |
| abstract_inverted_index.generally | 3 |
| abstract_inverted_index.pipeline. | 62 |
| abstract_inverted_index.represent | 37 |
| abstract_inverted_index.consisting | 72 |
| abstract_inverted_index.reasonable | 53 |
| abstract_inverted_index.sentences. | 19 |
| abstract_inverted_index.sequential | 34, 81 |
| abstract_inverted_index.subqueries | 50 |
| abstract_inverted_index.understand | 58 |
| abstract_inverted_index.utterances | 75 |
| abstract_inverted_index.classifiers | 12, 21, 56 |
| abstract_inverted_index.conditional | 32, 79 |
| abstract_inverted_index.effectively | 26 |
| abstract_inverted_index.demonstrates | 84 |
| abstract_inverted_index.Expressions), | 69 |
| abstract_inverted_index.decomposition | 86 |
| abstract_inverted_index.Domain-specific | 0 |
| abstract_inverted_index.CANDLE(Conditional | 65 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |