CanSig: a tool for benchmarking malignant state discovery in single-cell RNA-Seq data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.04.14.488324
Single-cell RNA sequencing (scRNA-seq) facilitates the discovery of gene signatures that define cell states across patients, which could be used in patient stratification and drug discovery. However, the lack of standardization in computational methodologies to analyse these data impedes the reproducibility of signature detection. To address this, we developed CanSig, a comprehensive benchmarking tool that evaluates methods for identifying transcriptional signatures in cancer. CanSig integrates metrics for batch correction and biological signal conservation with a gene signature correlation metric to score according to rediscovery, cross-dataset reproducibility, and clinical relevance. We applied CanSig to ten methods and to ten scRNA-seq datasets from four human cancer types—glioblastoma, breast cancer, lung adenocarcinoma, and cutaneous squamous cell carcinoma— representing 116 patients and 105,000 malignant cells. Our results identify BBKNN as a leading method. We showed that the signatures identified with these methods correlate with clinically relevant outcomes, including patient survival and lymph node metastasis. Thus, CanSig establishes a standardized framework for reproducible cancer transcriptomics analysis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.04.14.488324
- https://www.biorxiv.org/content/biorxiv/early/2022/04/14/2022.04.14.488324.full.pdf
- OA Status
- green
- Cited By
- 3
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224107162
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224107162Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.04.14.488324Digital Object Identifier
- Title
-
CanSig: a tool for benchmarking malignant state discovery in single-cell RNA-Seq dataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-14Full publication date if available
- Authors
-
Josephine Yates, Florian Barkmann, Pawel Piotr Czyz, Agnieszka Kraft, Marc Glettig, Frederieke Lohmann, Elia Saquand, Richard von der Horst, Nicolas Volken, Niko Beerenwinkel, Valentina BoevaList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.04.14.488324Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/04/14/2022.04.14.488324.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/04/14/2022.04.14.488324.full.pdfDirect OA link when available
- Concepts
-
Cancer, Computational biology, Biology, Transcriptional regulation, Gene, Genetics, Bioinformatics, Gene expressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224107162 |
|---|---|
| doi | https://doi.org/10.1101/2022.04.14.488324 |
| ids.doi | https://doi.org/10.1101/2022.04.14.488324 |
| ids.openalex | https://openalex.org/W4224107162 |
| fwci | 0.36920747 |
| type | preprint |
| title | CanSig: a tool for benchmarking malignant state discovery in single-cell RNA-Seq data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T11287 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer Genomics and Diagnostics |
| topics[2].id | https://openalex.org/T10885 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9923999905586243 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Gene expression and cancer classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C121608353 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6263750791549683 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[0].display_name | Cancer |
| concepts[1].id | https://openalex.org/C70721500 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5934300422668457 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[1].display_name | Computational biology |
| concepts[2].id | https://openalex.org/C86803240 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5391538143157959 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[2].display_name | Biology |
| concepts[3].id | https://openalex.org/C27153228 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5088977813720703 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3787274 |
| concepts[3].display_name | Transcriptional regulation |
| concepts[4].id | https://openalex.org/C104317684 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4997897148132324 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[4].display_name | Gene |
| concepts[5].id | https://openalex.org/C54355233 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34622520208358765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[5].display_name | Genetics |
| concepts[6].id | https://openalex.org/C60644358 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32198405265808105 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[6].display_name | Bioinformatics |
| concepts[7].id | https://openalex.org/C150194340 |
| concepts[7].level | 3 |
| concepts[7].score | 0.2417653501033783 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[7].display_name | Gene expression |
| keywords[0].id | https://openalex.org/keywords/cancer |
| keywords[0].score | 0.6263750791549683 |
| keywords[0].display_name | Cancer |
| keywords[1].id | https://openalex.org/keywords/computational-biology |
| keywords[1].score | 0.5934300422668457 |
| keywords[1].display_name | Computational biology |
| keywords[2].id | https://openalex.org/keywords/biology |
| keywords[2].score | 0.5391538143157959 |
| keywords[2].display_name | Biology |
| keywords[3].id | https://openalex.org/keywords/transcriptional-regulation |
| keywords[3].score | 0.5088977813720703 |
| keywords[3].display_name | Transcriptional regulation |
| keywords[4].id | https://openalex.org/keywords/gene |
| keywords[4].score | 0.4997897148132324 |
| keywords[4].display_name | Gene |
| keywords[5].id | https://openalex.org/keywords/genetics |
| keywords[5].score | 0.34622520208358765 |
| keywords[5].display_name | Genetics |
| keywords[6].id | https://openalex.org/keywords/bioinformatics |
| keywords[6].score | 0.32198405265808105 |
| keywords[6].display_name | Bioinformatics |
| keywords[7].id | https://openalex.org/keywords/gene-expression |
| keywords[7].score | 0.2417653501033783 |
| keywords[7].display_name | Gene expression |
| language | en |
| locations[0].id | doi:10.1101/2022.04.14.488324 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/04/14/2022.04.14.488324.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.04.14.488324 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038766206 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8346-4502 |
| authorships[0].author.display_name | Josephine Yates |
| authorships[0].countries | CH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I12708293 |
| authorships[0].affiliations[0].raw_affiliation_string | Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I35440088 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I35440088 |
| authorships[0].affiliations[2].raw_affiliation_string | ETH AI Center, ETH Zürich, Zurich Switzerland |
| authorships[0].institutions[0].id | https://openalex.org/I35440088 |
| authorships[0].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | ETH Zurich |
| authorships[0].institutions[1].id | https://openalex.org/I12708293 |
| authorships[0].institutions[1].ror | https://ror.org/002n09z45 |
| authorships[0].institutions[1].type | nonprofit |
| authorships[0].institutions[1].lineage | https://openalex.org/I12708293 |
| authorships[0].institutions[1].country_code | CH |
| authorships[0].institutions[1].display_name | SIB Swiss Institute of Bioinformatics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Josephine Yates |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ETH AI Center, ETH Zürich, Zurich Switzerland, Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland, Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland |
| authorships[1].author.id | https://openalex.org/A5081400823 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1317-8177 |
| authorships[1].author.display_name | Florian Barkmann |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[1].institutions[0].id | https://openalex.org/I35440088 |
| authorships[1].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | ETH Zurich |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Florian Barkmann |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[2].author.id | https://openalex.org/A5002800074 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Pawel Piotr Czyz |
| authorships[2].countries | CH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[2].affiliations[0].raw_affiliation_string | ETH AI Center, ETH Zürich, Zurich Switzerland |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I12708293 |
| authorships[2].affiliations[1].raw_affiliation_string | Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I35440088 |
| authorships[2].affiliations[2].raw_affiliation_string | Department of Biosystems Science and Engineering, ETH Zürich, Switzerland |
| authorships[2].institutions[0].id | https://openalex.org/I35440088 |
| authorships[2].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[2].institutions[0].country_code | CH |
| authorships[2].institutions[0].display_name | ETH Zurich |
| authorships[2].institutions[1].id | https://openalex.org/I12708293 |
| authorships[2].institutions[1].ror | https://ror.org/002n09z45 |
| authorships[2].institutions[1].type | nonprofit |
| authorships[2].institutions[1].lineage | https://openalex.org/I12708293 |
| authorships[2].institutions[1].country_code | CH |
| authorships[2].institutions[1].display_name | SIB Swiss Institute of Bioinformatics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pawel Czyz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biosystems Science and Engineering, ETH Zürich, Switzerland, ETH AI Center, ETH Zürich, Zurich Switzerland, Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland |
| authorships[3].author.id | https://openalex.org/A5040973473 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7672-2032 |
| authorships[3].author.display_name | Agnieszka Kraft |
| authorships[3].countries | CH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I12708293 |
| authorships[3].affiliations[0].raw_affiliation_string | Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I35440088 |
| authorships[3].affiliations[1].raw_affiliation_string | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[3].institutions[0].id | https://openalex.org/I35440088 |
| authorships[3].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | ETH Zurich |
| authorships[3].institutions[1].id | https://openalex.org/I12708293 |
| authorships[3].institutions[1].ror | https://ror.org/002n09z45 |
| authorships[3].institutions[1].type | nonprofit |
| authorships[3].institutions[1].lineage | https://openalex.org/I12708293 |
| authorships[3].institutions[1].country_code | CH |
| authorships[3].institutions[1].display_name | SIB Swiss Institute of Bioinformatics |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Agnieszka Kraft |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland, Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland |
| authorships[4].author.id | https://openalex.org/A5060544688 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2512-7740 |
| authorships[4].author.display_name | Marc Glettig |
| authorships[4].countries | CH |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[4].affiliations[0].raw_affiliation_string | Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland |
| authorships[4].institutions[0].id | https://openalex.org/I5124864 |
| authorships[4].institutions[0].ror | https://ror.org/02s376052 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[4].institutions[0].country_code | CH |
| authorships[4].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Marc Glettig |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland |
| authorships[5].author.id | https://openalex.org/A5098399175 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8122-2980 |
| authorships[5].author.display_name | Frederieke Lohmann |
| authorships[5].countries | CH |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[5].institutions[0].id | https://openalex.org/I35440088 |
| authorships[5].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[5].institutions[0].country_code | CH |
| authorships[5].institutions[0].display_name | ETH Zurich |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Frederieke Lohmann |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[6].author.id | https://openalex.org/A5027271493 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Elia Saquand |
| authorships[6].countries | CH |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[6].affiliations[0].raw_affiliation_string | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[6].institutions[0].id | https://openalex.org/I35440088 |
| authorships[6].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[6].institutions[0].country_code | CH |
| authorships[6].institutions[0].display_name | ETH Zurich |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Elia Saquand |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[7].author.id | https://openalex.org/A5106223574 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Richard von der Horst |
| authorships[7].countries | CH |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[7].institutions[0].id | https://openalex.org/I35440088 |
| authorships[7].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[7].institutions[0].country_code | CH |
| authorships[7].institutions[0].display_name | ETH Zurich |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Richard von der Horst |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[8].author.id | https://openalex.org/A5098486946 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6593-3731 |
| authorships[8].author.display_name | Nicolas Volken |
| authorships[8].countries | CH |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[8].affiliations[0].raw_affiliation_string | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[8].institutions[0].id | https://openalex.org/I35440088 |
| authorships[8].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[8].institutions[0].country_code | CH |
| authorships[8].institutions[0].display_name | ETH Zurich |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Nicolas Volken |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[9].author.id | https://openalex.org/A5035497488 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-0573-6119 |
| authorships[9].author.display_name | Niko Beerenwinkel |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Niko Beerenwinkel |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5074876525 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-4382-7185 |
| authorships[10].author.display_name | Valentina Boeva |
| authorships[10].countries | CH, FR |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I204730241 |
| authorships[10].affiliations[0].raw_affiliation_string | Cochin Institute, Inserm U101, CNRS UMR 8104, Paris Descartes University UMR-S101, Paris 75014, France |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I35440088 |
| authorships[10].affiliations[1].raw_affiliation_string | ETH AI Center, ETH Zürich, Zurich Switzerland |
| authorships[10].affiliations[2].institution_ids | https://openalex.org/I35440088 |
| authorships[10].affiliations[2].raw_affiliation_string | Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland |
| authorships[10].affiliations[3].institution_ids | https://openalex.org/I12708293 |
| authorships[10].affiliations[3].raw_affiliation_string | Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland |
| authorships[10].institutions[0].id | https://openalex.org/I35440088 |
| authorships[10].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[10].institutions[0].country_code | CH |
| authorships[10].institutions[0].display_name | ETH Zurich |
| authorships[10].institutions[1].id | https://openalex.org/I12708293 |
| authorships[10].institutions[1].ror | https://ror.org/002n09z45 |
| authorships[10].institutions[1].type | nonprofit |
| authorships[10].institutions[1].lineage | https://openalex.org/I12708293 |
| authorships[10].institutions[1].country_code | CH |
| authorships[10].institutions[1].display_name | SIB Swiss Institute of Bioinformatics |
| authorships[10].institutions[2].id | https://openalex.org/I1294671590 |
| authorships[10].institutions[2].ror | https://ror.org/02feahw73 |
| authorships[10].institutions[2].type | government |
| authorships[10].institutions[2].lineage | https://openalex.org/I1294671590 |
| authorships[10].institutions[2].country_code | FR |
| authorships[10].institutions[2].display_name | Centre National de la Recherche Scientifique |
| authorships[10].institutions[3].id | https://openalex.org/I154526488 |
| authorships[10].institutions[3].ror | https://ror.org/02vjkv261 |
| authorships[10].institutions[3].type | government |
| authorships[10].institutions[3].lineage | https://openalex.org/I154526488 |
| authorships[10].institutions[3].country_code | FR |
| authorships[10].institutions[3].display_name | Inserm |
| authorships[10].institutions[4].id | https://openalex.org/I204730241 |
| authorships[10].institutions[4].ror | https://ror.org/05f82e368 |
| authorships[10].institutions[4].type | education |
| authorships[10].institutions[4].lineage | https://openalex.org/I204730241 |
| authorships[10].institutions[4].country_code | FR |
| authorships[10].institutions[4].display_name | Université Paris Cité |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Valentina Boeva |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | Cochin Institute, Inserm U101, CNRS UMR 8104, Paris Descartes University UMR-S101, Paris 75014, France, ETH AI Center, ETH Zürich, Zurich Switzerland, Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich Switzerland, Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2022/04/14/2022.04.14.488324.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-19T00:00:00 |
| display_name | CanSig: a tool for benchmarking malignant state discovery in single-cell RNA-Seq data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2131250617, https://openalex.org/W4233034052, https://openalex.org/W2371030422, https://openalex.org/W2065530813, https://openalex.org/W1509071637, https://openalex.org/W4366601060, https://openalex.org/W2364878181, https://openalex.org/W2957509185, https://openalex.org/W2034625591, https://openalex.org/W1627262848 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.04.14.488324 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/04/14/2022.04.14.488324.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.04.14.488324 |
| primary_location.id | doi:10.1101/2022.04.14.488324 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/04/14/2022.04.14.488324.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.04.14.488324 |
| publication_date | 2022-04-14 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2951890476, https://openalex.org/W2960029024, https://openalex.org/W3193419934, https://openalex.org/W3196701377, https://openalex.org/W2883808647, https://openalex.org/W2961217357, https://openalex.org/W4283716873, https://openalex.org/W3036371598, https://openalex.org/W3198511950, https://openalex.org/W4401687611, https://openalex.org/W2884607428, https://openalex.org/W3129126066, https://openalex.org/W3193032675, https://openalex.org/W1998728654, https://openalex.org/W4225598893, https://openalex.org/W3012280517, https://openalex.org/W2794480084, https://openalex.org/W3088521497, https://openalex.org/W2967177832, https://openalex.org/W2984472267, https://openalex.org/W2942880491, https://openalex.org/W4378953806, https://openalex.org/W3022968840, https://openalex.org/W4399500005, https://openalex.org/W4313236841, https://openalex.org/W3205024267, https://openalex.org/W3040819442, https://openalex.org/W3004765765, https://openalex.org/W4399284145, https://openalex.org/W2767792097, https://openalex.org/W2148060514, https://openalex.org/W3127177949, https://openalex.org/W2800392236, https://openalex.org/W4285048747, https://openalex.org/W3122989566, https://openalex.org/W4210875782, https://openalex.org/W3196971188, https://openalex.org/W2795989238, https://openalex.org/W2950983802, https://openalex.org/W2520632143, https://openalex.org/W2901677030, https://openalex.org/W3106188259, https://openalex.org/W2905317377, https://openalex.org/W2793937297, https://openalex.org/W2950640959, https://openalex.org/W2949067670, https://openalex.org/W2332292689, https://openalex.org/W3002417351, https://openalex.org/W3126523442, https://openalex.org/W2756747062, https://openalex.org/W1994229067, https://openalex.org/W2792647356, https://openalex.org/W2130410032, https://openalex.org/W2130430382, https://openalex.org/W3197428844, https://openalex.org/W4220765144, https://openalex.org/W2972865130, https://openalex.org/W3169908766 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 51, 75, 127, 154 |
| abstract_inverted_index.To | 45 |
| abstract_inverted_index.We | 90, 130 |
| abstract_inverted_index.as | 126 |
| abstract_inverted_index.be | 19 |
| abstract_inverted_index.in | 21, 32, 62 |
| abstract_inverted_index.of | 8, 30, 42 |
| abstract_inverted_index.to | 35, 80, 83, 93, 97 |
| abstract_inverted_index.we | 48 |
| abstract_inverted_index.116 | 116 |
| abstract_inverted_index.Our | 122 |
| abstract_inverted_index.RNA | 2 |
| abstract_inverted_index.and | 24, 70, 87, 96, 110, 118, 147 |
| abstract_inverted_index.for | 58, 67, 157 |
| abstract_inverted_index.ten | 94, 98 |
| abstract_inverted_index.the | 6, 28, 40, 133 |
| abstract_inverted_index.cell | 13, 113 |
| abstract_inverted_index.data | 38 |
| abstract_inverted_index.drug | 25 |
| abstract_inverted_index.four | 102 |
| abstract_inverted_index.from | 101 |
| abstract_inverted_index.gene | 9, 76 |
| abstract_inverted_index.lack | 29 |
| abstract_inverted_index.lung | 108 |
| abstract_inverted_index.node | 149 |
| abstract_inverted_index.that | 11, 55, 132 |
| abstract_inverted_index.tool | 54 |
| abstract_inverted_index.used | 20 |
| abstract_inverted_index.with | 74, 136, 140 |
| abstract_inverted_index.BBKNN | 125 |
| abstract_inverted_index.Thus, | 151 |
| abstract_inverted_index.batch | 68 |
| abstract_inverted_index.could | 18 |
| abstract_inverted_index.human | 103 |
| abstract_inverted_index.lymph | 148 |
| abstract_inverted_index.score | 81 |
| abstract_inverted_index.these | 37, 137 |
| abstract_inverted_index.this, | 47 |
| abstract_inverted_index.which | 17 |
| abstract_inverted_index.CanSig | 64, 92, 152 |
| abstract_inverted_index.across | 15 |
| abstract_inverted_index.breast | 106 |
| abstract_inverted_index.cancer | 104, 159 |
| abstract_inverted_index.cells. | 121 |
| abstract_inverted_index.define | 12 |
| abstract_inverted_index.metric | 79 |
| abstract_inverted_index.showed | 131 |
| abstract_inverted_index.signal | 72 |
| abstract_inverted_index.states | 14 |
| abstract_inverted_index.105,000 | 119 |
| abstract_inverted_index.CanSig, | 50 |
| abstract_inverted_index.address | 46 |
| abstract_inverted_index.analyse | 36 |
| abstract_inverted_index.applied | 91 |
| abstract_inverted_index.cancer, | 107 |
| abstract_inverted_index.cancer. | 63 |
| abstract_inverted_index.impedes | 39 |
| abstract_inverted_index.leading | 128 |
| abstract_inverted_index.method. | 129 |
| abstract_inverted_index.methods | 57, 95, 138 |
| abstract_inverted_index.metrics | 66 |
| abstract_inverted_index.patient | 22, 145 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.clinical | 88 |
| abstract_inverted_index.datasets | 100 |
| abstract_inverted_index.identify | 124 |
| abstract_inverted_index.patients | 117 |
| abstract_inverted_index.relevant | 142 |
| abstract_inverted_index.squamous | 112 |
| abstract_inverted_index.survival | 146 |
| abstract_inverted_index.according | 82 |
| abstract_inverted_index.analysis. | 161 |
| abstract_inverted_index.correlate | 139 |
| abstract_inverted_index.cutaneous | 111 |
| abstract_inverted_index.developed | 49 |
| abstract_inverted_index.discovery | 7 |
| abstract_inverted_index.evaluates | 56 |
| abstract_inverted_index.framework | 156 |
| abstract_inverted_index.including | 144 |
| abstract_inverted_index.malignant | 120 |
| abstract_inverted_index.outcomes, | 143 |
| abstract_inverted_index.patients, | 16 |
| abstract_inverted_index.scRNA-seq | 99 |
| abstract_inverted_index.signature | 43, 77 |
| abstract_inverted_index.biological | 71 |
| abstract_inverted_index.clinically | 141 |
| abstract_inverted_index.correction | 69 |
| abstract_inverted_index.detection. | 44 |
| abstract_inverted_index.discovery. | 26 |
| abstract_inverted_index.identified | 135 |
| abstract_inverted_index.integrates | 65 |
| abstract_inverted_index.relevance. | 89 |
| abstract_inverted_index.sequencing | 3 |
| abstract_inverted_index.signatures | 10, 61, 134 |
| abstract_inverted_index.(scRNA-seq) | 4 |
| abstract_inverted_index.Single-cell | 1 |
| abstract_inverted_index.correlation | 78 |
| abstract_inverted_index.establishes | 153 |
| abstract_inverted_index.facilitates | 5 |
| abstract_inverted_index.identifying | 59 |
| abstract_inverted_index.metastasis. | 150 |
| abstract_inverted_index.benchmarking | 53 |
| abstract_inverted_index.carcinoma— | 114 |
| abstract_inverted_index.conservation | 73 |
| abstract_inverted_index.rediscovery, | 84 |
| abstract_inverted_index.representing | 115 |
| abstract_inverted_index.reproducible | 158 |
| abstract_inverted_index.standardized | 155 |
| abstract_inverted_index.comprehensive | 52 |
| abstract_inverted_index.computational | 33 |
| abstract_inverted_index.cross-dataset | 85 |
| abstract_inverted_index.methodologies | 34 |
| abstract_inverted_index.stratification | 23 |
| abstract_inverted_index.adenocarcinoma, | 109 |
| abstract_inverted_index.reproducibility | 41 |
| abstract_inverted_index.standardization | 31 |
| abstract_inverted_index.transcriptional | 60 |
| abstract_inverted_index.transcriptomics | 160 |
| abstract_inverted_index.reproducibility, | 86 |
| abstract_inverted_index.types—glioblastoma, | 105 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5074876525 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I12708293, https://openalex.org/I1294671590, https://openalex.org/I154526488, https://openalex.org/I204730241, https://openalex.org/I35440088 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.53269263 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |