Capturing and interpreting wildfire spread dynamics: attention-based spatiotemporal models using ConvLSTM networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.ecoinf.2024.102760
Predicting the trajectory of geographical events, such as wildfire spread, presents a formidable task due to the dynamic associations among influential biophysical factors. Geo-events like wildfires frequently display short and long-range spatial and temporal correlations. Short-range effects are the direct contact and near-contact spread of the fire front. Long-range effects are represented by processes such as spotting, where firebrands carried by the wind ignite fires distant from the flaming front, altering the shape and speed of an advancing fire front. This study addresses these modeling challenges by clearly defining and analyzing the scale-dependent spatiotemporal dynamics that influence wildfire spread, focusing on the interplay between biophysical factors and fire behavior. We propose two unique attention-based spatiotemporal models using Convolutional Long Short-Term Memory (ConvLSTM) networks. These models are designed to learn and capture a range of local to global and short and long-range spatiotemporal correlations. The proposed models were tested on two datasets: a high-resolution wildfire spread dataset produced with a semi-empirical percolation model and a satellite observed wildfire spread data in California 2012–2021. Results indicate that attention-based models accurately predict fire front movements that are consistent with known wildfire spread-biophysical dynamics. Our research suggests there is considerable potential for attention mechanisms to capture the spatiotemporal behavior of wildfire spread, with model transferability, that can guide rapid deployment of wildfire management operations. We also highlight directions for future studies that focus on how the self-attention mechanism could enhance model performance for a range of geospatial applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ecoinf.2024.102760
- OA Status
- gold
- Cited By
- 9
- References
- 65
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401390231
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401390231Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ecoinf.2024.102760Digital Object Identifier
- Title
-
Capturing and interpreting wildfire spread dynamics: attention-based spatiotemporal models using ConvLSTM networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-07Full publication date if available
- Authors
-
Arif Masrur, Manzhu Yu, Alan H. TaylorList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ecoinf.2024.102760Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ecoinf.2024.102760Direct OA link when available
- Concepts
-
Computer science, Range (aeronautics), Transferability, Machine learning, Logit, Composite material, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
65Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401390231 |
|---|---|
| doi | https://doi.org/10.1016/j.ecoinf.2024.102760 |
| ids.doi | https://doi.org/10.1016/j.ecoinf.2024.102760 |
| ids.openalex | https://openalex.org/W4401390231 |
| fwci | 5.16405698 |
| type | article |
| title | Capturing and interpreting wildfire spread dynamics: attention-based spatiotemporal models using ConvLSTM networks |
| biblio.issue | |
| biblio.volume | 82 |
| biblio.last_page | 102760 |
| biblio.first_page | 102760 |
| topics[0].id | https://openalex.org/T10555 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Fire effects on ecosystems |
| topics[1].id | https://openalex.org/T10466 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9854000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Meteorological Phenomena and Simulations |
| topics[2].id | https://openalex.org/T10535 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9847999811172485 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2308 |
| topics[2].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[2].display_name | Landslides and related hazards |
| is_xpac | False |
| apc_list.value | 2510 |
| apc_list.currency | USD |
| apc_list.value_usd | 2510 |
| apc_paid.value | 2510 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2510 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5985418558120728 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C204323151 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5630412697792053 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[1].display_name | Range (aeronautics) |
| concepts[2].id | https://openalex.org/C61272859 |
| concepts[2].level | 3 |
| concepts[2].score | 0.506709635257721 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7834031 |
| concepts[2].display_name | Transferability |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.21331071853637695 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C140331021 |
| concepts[4].level | 2 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1868104 |
| concepts[4].display_name | Logit |
| concepts[5].id | https://openalex.org/C159985019 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[5].display_name | Composite material |
| concepts[6].id | https://openalex.org/C192562407 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[6].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5985418558120728 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/range |
| keywords[1].score | 0.5630412697792053 |
| keywords[1].display_name | Range (aeronautics) |
| keywords[2].id | https://openalex.org/keywords/transferability |
| keywords[2].score | 0.506709635257721 |
| keywords[2].display_name | Transferability |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.21331071853637695 |
| keywords[3].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1016/j.ecoinf.2024.102760 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195809937 |
| locations[0].source.issn | 1574-9541, 1878-0512 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1574-9541 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Ecological Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Ecological Informatics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ecoinf.2024.102760 |
| locations[1].id | pmh:oai:doaj.org/article:579f42dd3d3940d3b3bb0d4832198f8c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Ecological Informatics, Vol 82, Iss , Pp 102760- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/579f42dd3d3940d3b3bb0d4832198f8c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5080823665 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5050-407X |
| authorships[0].author.display_name | Arif Masrur |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130769515 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Geography, Penn State University, University Park, PA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I130769515 |
| authorships[0].institutions[0].ror | https://ror.org/04p491231 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130769515 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Pennsylvania State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arif Masrur |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Geography, Penn State University, University Park, PA, USA |
| authorships[1].author.id | https://openalex.org/A5073577524 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6769-7517 |
| authorships[1].author.display_name | Manzhu Yu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130769515 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Geography, Penn State University, University Park, PA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I130769515 |
| authorships[1].institutions[0].ror | https://ror.org/04p491231 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130769515 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Pennsylvania State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Manzhu Yu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Geography, Penn State University, University Park, PA, USA |
| authorships[2].author.id | https://openalex.org/A5109986401 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Alan H. Taylor |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I130769515 |
| authorships[2].affiliations[0].raw_affiliation_string | Earth and Environmental Systems Institute, Penn State University, University Park, PA, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I130769515 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Geography, Penn State University, University Park, PA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I130769515 |
| authorships[2].institutions[0].ror | https://ror.org/04p491231 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I130769515 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Pennsylvania State University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Alan Taylor |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Geography, Penn State University, University Park, PA, USA, Earth and Environmental Systems Institute, Penn State University, University Park, PA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ecoinf.2024.102760 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Capturing and interpreting wildfire spread dynamics: attention-based spatiotemporal models using ConvLSTM networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10555 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Fire effects on ecosystems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W4399895933, https://openalex.org/W2161221533, https://openalex.org/W4229699405, https://openalex.org/W1666484574, https://openalex.org/W2216382288, https://openalex.org/W2355491300, https://openalex.org/W4234629551, https://openalex.org/W2011110943 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ecoinf.2024.102760 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195809937 |
| best_oa_location.source.issn | 1574-9541, 1878-0512 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1574-9541 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Ecological Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Ecological Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ecoinf.2024.102760 |
| primary_location.id | doi:10.1016/j.ecoinf.2024.102760 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195809937 |
| primary_location.source.issn | 1574-9541, 1878-0512 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1574-9541 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Ecological Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Ecological Informatics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ecoinf.2024.102760 |
| publication_date | 2024-08-07 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2530960585, https://openalex.org/W6668787467, https://openalex.org/W3146506602, https://openalex.org/W2083335707, https://openalex.org/W6762205418, https://openalex.org/W4381165955, https://openalex.org/W3034749137, https://openalex.org/W2979526390, https://openalex.org/W4281685235, https://openalex.org/W2005089486, https://openalex.org/W1975008515, https://openalex.org/W3213800655, https://openalex.org/W2109267829, https://openalex.org/W2167477614, https://openalex.org/W6617145748, https://openalex.org/W2301696792, https://openalex.org/W2774337825, https://openalex.org/W2026648454, https://openalex.org/W2096323201, https://openalex.org/W2000994041, https://openalex.org/W2925105068, https://openalex.org/W2509823463, https://openalex.org/W3008626511, https://openalex.org/W4223653531, https://openalex.org/W2156910358, https://openalex.org/W4309563912, https://openalex.org/W2151442999, https://openalex.org/W3048401240, https://openalex.org/W4319081738, https://openalex.org/W6771395441, https://openalex.org/W3208697304, https://openalex.org/W1483839007, https://openalex.org/W4386353213, https://openalex.org/W4399880721, https://openalex.org/W3198553581, https://openalex.org/W2075776086, https://openalex.org/W3113887065, https://openalex.org/W2895204231, https://openalex.org/W2914828997, https://openalex.org/W2891710555, https://openalex.org/W2613791403, https://openalex.org/W6628877408, https://openalex.org/W6750579655, https://openalex.org/W2097086408, https://openalex.org/W2145445755, https://openalex.org/W1998525406, https://openalex.org/W3198642609, https://openalex.org/W6739901393, https://openalex.org/W1987868389, https://openalex.org/W4380995193, https://openalex.org/W6753412334, https://openalex.org/W6777239595, https://openalex.org/W3034885317, https://openalex.org/W2594633041, https://openalex.org/W3098105755, https://openalex.org/W2500035193, https://openalex.org/W3099079911, https://openalex.org/W2559655401, https://openalex.org/W2914584698, https://openalex.org/W2996936831, https://openalex.org/W3104803445, https://openalex.org/W3205566854, https://openalex.org/W2800336546, https://openalex.org/W3111690819, https://openalex.org/W2072550405 |
| referenced_works_count | 65 |
| abstract_inverted_index.a | 11, 131, 151, 158, 163, 239 |
| abstract_inverted_index.We | 109, 220 |
| abstract_inverted_index.an | 76 |
| abstract_inverted_index.as | 7, 55 |
| abstract_inverted_index.by | 52, 60, 86 |
| abstract_inverted_index.in | 169 |
| abstract_inverted_index.is | 194 |
| abstract_inverted_index.of | 3, 44, 75, 133, 205, 216, 241 |
| abstract_inverted_index.on | 100, 148, 229 |
| abstract_inverted_index.to | 15, 127, 135, 200 |
| abstract_inverted_index.Our | 190 |
| abstract_inverted_index.The | 143 |
| abstract_inverted_index.and | 29, 32, 41, 73, 89, 106, 129, 137, 139, 162 |
| abstract_inverted_index.are | 37, 50, 125, 183 |
| abstract_inverted_index.can | 212 |
| abstract_inverted_index.due | 14 |
| abstract_inverted_index.for | 197, 224, 238 |
| abstract_inverted_index.how | 230 |
| abstract_inverted_index.the | 1, 16, 38, 45, 61, 67, 71, 91, 101, 202, 231 |
| abstract_inverted_index.two | 111, 149 |
| abstract_inverted_index.Long | 118 |
| abstract_inverted_index.This | 80 |
| abstract_inverted_index.also | 221 |
| abstract_inverted_index.data | 168 |
| abstract_inverted_index.fire | 46, 78, 107, 179 |
| abstract_inverted_index.from | 66 |
| abstract_inverted_index.like | 24 |
| abstract_inverted_index.such | 6, 54 |
| abstract_inverted_index.task | 13 |
| abstract_inverted_index.that | 95, 174, 182, 211, 227 |
| abstract_inverted_index.were | 146 |
| abstract_inverted_index.wind | 62 |
| abstract_inverted_index.with | 157, 185, 208 |
| abstract_inverted_index.These | 123 |
| abstract_inverted_index.among | 19 |
| abstract_inverted_index.could | 234 |
| abstract_inverted_index.fires | 64 |
| abstract_inverted_index.focus | 228 |
| abstract_inverted_index.front | 180 |
| abstract_inverted_index.guide | 213 |
| abstract_inverted_index.known | 186 |
| abstract_inverted_index.learn | 128 |
| abstract_inverted_index.local | 134 |
| abstract_inverted_index.model | 161, 209, 236 |
| abstract_inverted_index.range | 132, 240 |
| abstract_inverted_index.rapid | 214 |
| abstract_inverted_index.shape | 72 |
| abstract_inverted_index.short | 28, 138 |
| abstract_inverted_index.speed | 74 |
| abstract_inverted_index.study | 81 |
| abstract_inverted_index.there | 193 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.using | 116 |
| abstract_inverted_index.where | 57 |
| abstract_inverted_index.Memory | 120 |
| abstract_inverted_index.direct | 39 |
| abstract_inverted_index.front, | 69 |
| abstract_inverted_index.front. | 47, 79 |
| abstract_inverted_index.future | 225 |
| abstract_inverted_index.global | 136 |
| abstract_inverted_index.ignite | 63 |
| abstract_inverted_index.models | 115, 124, 145, 176 |
| abstract_inverted_index.spread | 43, 154, 167 |
| abstract_inverted_index.tested | 147 |
| abstract_inverted_index.unique | 112 |
| abstract_inverted_index.Results | 172 |
| abstract_inverted_index.between | 103 |
| abstract_inverted_index.capture | 130, 201 |
| abstract_inverted_index.carried | 59 |
| abstract_inverted_index.clearly | 87 |
| abstract_inverted_index.contact | 40 |
| abstract_inverted_index.dataset | 155 |
| abstract_inverted_index.display | 27 |
| abstract_inverted_index.distant | 65 |
| abstract_inverted_index.dynamic | 17 |
| abstract_inverted_index.effects | 36, 49 |
| abstract_inverted_index.enhance | 235 |
| abstract_inverted_index.events, | 5 |
| abstract_inverted_index.factors | 105 |
| abstract_inverted_index.flaming | 68 |
| abstract_inverted_index.predict | 178 |
| abstract_inverted_index.propose | 110 |
| abstract_inverted_index.spatial | 31 |
| abstract_inverted_index.spread, | 9, 98, 207 |
| abstract_inverted_index.studies | 226 |
| abstract_inverted_index.altering | 70 |
| abstract_inverted_index.behavior | 204 |
| abstract_inverted_index.defining | 88 |
| abstract_inverted_index.designed | 126 |
| abstract_inverted_index.dynamics | 94 |
| abstract_inverted_index.factors. | 22 |
| abstract_inverted_index.focusing | 99 |
| abstract_inverted_index.indicate | 173 |
| abstract_inverted_index.modeling | 84 |
| abstract_inverted_index.observed | 165 |
| abstract_inverted_index.presents | 10 |
| abstract_inverted_index.produced | 156 |
| abstract_inverted_index.proposed | 144 |
| abstract_inverted_index.research | 191 |
| abstract_inverted_index.suggests | 192 |
| abstract_inverted_index.temporal | 33 |
| abstract_inverted_index.wildfire | 8, 97, 153, 166, 187, 206, 217 |
| abstract_inverted_index.addresses | 82 |
| abstract_inverted_index.advancing | 77 |
| abstract_inverted_index.analyzing | 90 |
| abstract_inverted_index.attention | 198 |
| abstract_inverted_index.behavior. | 108 |
| abstract_inverted_index.datasets: | 150 |
| abstract_inverted_index.dynamics. | 189 |
| abstract_inverted_index.highlight | 222 |
| abstract_inverted_index.influence | 96 |
| abstract_inverted_index.interplay | 102 |
| abstract_inverted_index.mechanism | 233 |
| abstract_inverted_index.movements | 181 |
| abstract_inverted_index.networks. | 122 |
| abstract_inverted_index.potential | 196 |
| abstract_inverted_index.processes | 53 |
| abstract_inverted_index.satellite | 164 |
| abstract_inverted_index.spotting, | 56 |
| abstract_inverted_index.wildfires | 25 |
| abstract_inverted_index.(ConvLSTM) | 121 |
| abstract_inverted_index.California | 170 |
| abstract_inverted_index.Geo-events | 23 |
| abstract_inverted_index.Long-range | 48 |
| abstract_inverted_index.Predicting | 0 |
| abstract_inverted_index.Short-Term | 119 |
| abstract_inverted_index.accurately | 177 |
| abstract_inverted_index.challenges | 85 |
| abstract_inverted_index.consistent | 184 |
| abstract_inverted_index.deployment | 215 |
| abstract_inverted_index.directions | 223 |
| abstract_inverted_index.firebrands | 58 |
| abstract_inverted_index.formidable | 12 |
| abstract_inverted_index.frequently | 26 |
| abstract_inverted_index.geospatial | 242 |
| abstract_inverted_index.long-range | 30, 140 |
| abstract_inverted_index.management | 218 |
| abstract_inverted_index.mechanisms | 199 |
| abstract_inverted_index.trajectory | 2 |
| abstract_inverted_index.Short-range | 35 |
| abstract_inverted_index.biophysical | 21, 104 |
| abstract_inverted_index.influential | 20 |
| abstract_inverted_index.operations. | 219 |
| abstract_inverted_index.percolation | 160 |
| abstract_inverted_index.performance | 237 |
| abstract_inverted_index.represented | 51 |
| abstract_inverted_index.2012–2021. | 171 |
| abstract_inverted_index.associations | 18 |
| abstract_inverted_index.considerable | 195 |
| abstract_inverted_index.geographical | 4 |
| abstract_inverted_index.near-contact | 42 |
| abstract_inverted_index.Convolutional | 117 |
| abstract_inverted_index.applications. | 243 |
| abstract_inverted_index.correlations. | 34, 142 |
| abstract_inverted_index.self-attention | 232 |
| abstract_inverted_index.semi-empirical | 159 |
| abstract_inverted_index.spatiotemporal | 93, 114, 141, 203 |
| abstract_inverted_index.attention-based | 113, 175 |
| abstract_inverted_index.high-resolution | 152 |
| abstract_inverted_index.scale-dependent | 92 |
| abstract_inverted_index.transferability, | 210 |
| abstract_inverted_index.spread-biophysical | 188 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5073577524 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I130769515 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.92649447 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |