Capturing missing physics in climate model parameterizations using neural differential equations Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2010.12559
We explore how neural differential equations (NDEs) may be trained on highly resolved fluid-dynamical models of unresolved scales providing an ideal framework for data-driven parameterizations in climate models. NDEs overcome some of the limitations of traditional neural networks (NNs) in fluid dynamical applications in that they can readily incorporate conservation laws and boundary conditions and are stable when integrated over time. We advocate a method that employs a 'residual' approach, in which the NN is used to improve upon an existing parameterization through the representation of residual fluxes which are not captured by the base parameterization. This reduces the amount of training required and providing a method for capturing up-gradient and nonlocal fluxes. As an illustrative example, we consider the parameterization of free convection of the oceanic boundary layer triggered by buoyancy loss at the surface. We demonstrate that a simple parameterization of the process - convective adjustment - can be improved upon by training a NDE against highly resolved explicit models, to capture entrainment fluxes at the base of the well-mixed layer, fluxes that convective adjustment itself cannot represent. The augmented parameterization outperforms existing commonly used parameterizations such as the K-Profile Parameterization (KPP). We showcase that the NDE performs well independent of the time-stepper and that an online training approach using differentiable simulation via the Julia scientific machine learning software stack improves accuracy by an order-of-magnitude. We conclude that NDEs provide an exciting route forward to the development of representations of sub-grid-scale processes for climate science, opening up myriad new opportunities.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2010.12559
- https://arxiv.org/pdf/2010.12559
- OA Status
- green
- Cited By
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287634467
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287634467Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2010.12559Digital Object Identifier
- Title
-
Capturing missing physics in climate model parameterizations using neural differential equationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-23Full publication date if available
- Authors
-
Ali J. Ramadhan, John C. Marshall, André M. C. Souza, Gregory LeClaire Wagner, Manvitha Ponnapati, Christopher RackauckasList of authors in order
- Landing page
-
https://arxiv.org/abs/2010.12559Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2010.12559Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2010.12559Direct OA link when available
- Concepts
-
Artificial neural network, Computer science, Climate model, Representation (politics), Residual, Boundary (topology), Parametrization (atmospheric modeling), Process (computing), Applied mathematics, Algorithm, Mathematics, Artificial intelligence, Physics, Geology, Mathematical analysis, Operating system, Oceanography, Quantum mechanics, Law, Radiative transfer, Climate change, Politics, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2, 2023: 2, 2022: 6, 2021: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287634467 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2010.12559 |
| ids.doi | https://doi.org/10.48550/arxiv.2010.12559 |
| ids.openalex | https://openalex.org/W4287634467 |
| fwci | |
| type | preprint |
| title | Capturing missing physics in climate model parameterizations using neural differential equations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9944000244140625 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T10029 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9925000071525574 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Climate variability and models |
| topics[2].id | https://openalex.org/T11206 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9860000014305115 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Model Reduction and Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6077279448509216 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5845521092414856 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C168754636 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5333412289619446 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q620920 |
| concepts[2].display_name | Climate model |
| concepts[3].id | https://openalex.org/C2776359362 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5180261731147766 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[3].display_name | Representation (politics) |
| concepts[4].id | https://openalex.org/C155512373 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4450042247772217 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[4].display_name | Residual |
| concepts[5].id | https://openalex.org/C62354387 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43739423155784607 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q875399 |
| concepts[5].display_name | Boundary (topology) |
| concepts[6].id | https://openalex.org/C202887219 |
| concepts[6].level | 3 |
| concepts[6].score | 0.41424036026000977 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3895221 |
| concepts[6].display_name | Parametrization (atmospheric modeling) |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41066673398017883 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3429703116416931 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.28435784578323364 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.22604718804359436 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2190335988998413 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.15933987498283386 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15710577368736267 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0913701057434082 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C111368507 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[16].display_name | Oceanography |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C199539241 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[18].display_name | Law |
| concepts[19].id | https://openalex.org/C74902906 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1190858 |
| concepts[19].display_name | Radiative transfer |
| concepts[20].id | https://openalex.org/C132651083 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[20].display_name | Climate change |
| concepts[21].id | https://openalex.org/C94625758 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[21].display_name | Politics |
| concepts[22].id | https://openalex.org/C17744445 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[22].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6077279448509216 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5845521092414856 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/climate-model |
| keywords[2].score | 0.5333412289619446 |
| keywords[2].display_name | Climate model |
| keywords[3].id | https://openalex.org/keywords/representation |
| keywords[3].score | 0.5180261731147766 |
| keywords[3].display_name | Representation (politics) |
| keywords[4].id | https://openalex.org/keywords/residual |
| keywords[4].score | 0.4450042247772217 |
| keywords[4].display_name | Residual |
| keywords[5].id | https://openalex.org/keywords/boundary |
| keywords[5].score | 0.43739423155784607 |
| keywords[5].display_name | Boundary (topology) |
| keywords[6].id | https://openalex.org/keywords/parametrization |
| keywords[6].score | 0.41424036026000977 |
| keywords[6].display_name | Parametrization (atmospheric modeling) |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.41066673398017883 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.3429703116416931 |
| keywords[8].display_name | Applied mathematics |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.28435784578323364 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.22604718804359436 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2190335988998413 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.15933987498283386 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/geology |
| keywords[13].score | 0.15710577368736267 |
| keywords[13].display_name | Geology |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.0913701057434082 |
| keywords[14].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2010.12559 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2010.12559 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2010.12559 |
| locations[1].id | doi:10.48550/arxiv.2010.12559 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2010.12559 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038949723 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3253-3525 |
| authorships[0].author.display_name | Ali J. Ramadhan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ramadhan, Ali |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070604004 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7902-6291 |
| authorships[1].author.display_name | John C. Marshall |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marshall, John |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002579102 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3023-6770 |
| authorships[2].author.display_name | André M. C. Souza |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Souza, Andre |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5012146441 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5317-2445 |
| authorships[3].author.display_name | Gregory LeClaire Wagner |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wagner, Gregory LeClaire |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5054214714 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Manvitha Ponnapati |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ponnapati, Manvitha |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5043195923 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5850-0663 |
| authorships[5].author.display_name | Christopher Rackauckas |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rackauckas, Christopher |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2010.12559 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-25T00:00:00 |
| display_name | Capturing missing physics in climate model parameterizations using neural differential equations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9944000244140625 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W2153421756, https://openalex.org/W2054489697, https://openalex.org/W2077818434, https://openalex.org/W2361081803, https://openalex.org/W2036241269, https://openalex.org/W2109057766, https://openalex.org/W4250375811, https://openalex.org/W2078644396, https://openalex.org/W2026930022, https://openalex.org/W2057084625 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2010.12559 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2010.12559 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2010.12559 |
| primary_location.id | pmh:oai:arXiv.org:2010.12559 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2010.12559 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2010.12559 |
| publication_date | 2020-10-23 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 145, 148 |
| abstract_inverted_index.a | 63, 67, 105, 139, 155 |
| abstract_inverted_index.As | 113 |
| abstract_inverted_index.NN | 73 |
| abstract_inverted_index.We | 0, 61, 136, 194, 227 |
| abstract_inverted_index.an | 19, 79, 114, 207, 225, 232 |
| abstract_inverted_index.as | 189 |
| abstract_inverted_index.at | 133, 166 |
| abstract_inverted_index.be | 8, 150 |
| abstract_inverted_index.by | 92, 130, 153, 224 |
| abstract_inverted_index.in | 25, 39, 43, 70 |
| abstract_inverted_index.is | 74 |
| abstract_inverted_index.of | 15, 31, 34, 85, 100, 121, 124, 142, 169, 202, 239, 241 |
| abstract_inverted_index.on | 10 |
| abstract_inverted_index.to | 76, 162, 236 |
| abstract_inverted_index.up | 248 |
| abstract_inverted_index.we | 117 |
| abstract_inverted_index.NDE | 156, 198 |
| abstract_inverted_index.The | 180 |
| abstract_inverted_index.and | 51, 54, 103, 110, 205 |
| abstract_inverted_index.are | 55, 89 |
| abstract_inverted_index.can | 46, 149 |
| abstract_inverted_index.for | 22, 107, 244 |
| abstract_inverted_index.how | 2 |
| abstract_inverted_index.may | 7 |
| abstract_inverted_index.new | 250 |
| abstract_inverted_index.not | 90 |
| abstract_inverted_index.the | 32, 72, 83, 93, 98, 119, 125, 134, 143, 167, 170, 190, 197, 203, 215, 237 |
| abstract_inverted_index.via | 214 |
| abstract_inverted_index.NDEs | 28, 230 |
| abstract_inverted_index.This | 96 |
| abstract_inverted_index.base | 94, 168 |
| abstract_inverted_index.free | 122 |
| abstract_inverted_index.laws | 50 |
| abstract_inverted_index.loss | 132 |
| abstract_inverted_index.over | 59 |
| abstract_inverted_index.some | 30 |
| abstract_inverted_index.such | 188 |
| abstract_inverted_index.that | 44, 65, 138, 174, 196, 206, 229 |
| abstract_inverted_index.they | 45 |
| abstract_inverted_index.upon | 78, 152 |
| abstract_inverted_index.used | 75, 186 |
| abstract_inverted_index.well | 200 |
| abstract_inverted_index.when | 57 |
| abstract_inverted_index.(NNs) | 38 |
| abstract_inverted_index.Julia | 216 |
| abstract_inverted_index.fluid | 40 |
| abstract_inverted_index.ideal | 20 |
| abstract_inverted_index.layer | 128 |
| abstract_inverted_index.route | 234 |
| abstract_inverted_index.stack | 221 |
| abstract_inverted_index.time. | 60 |
| abstract_inverted_index.using | 211 |
| abstract_inverted_index.which | 71, 88 |
| abstract_inverted_index.(KPP). | 193 |
| abstract_inverted_index.(NDEs) | 6 |
| abstract_inverted_index.amount | 99 |
| abstract_inverted_index.cannot | 178 |
| abstract_inverted_index.fluxes | 87, 165, 173 |
| abstract_inverted_index.highly | 11, 158 |
| abstract_inverted_index.itself | 177 |
| abstract_inverted_index.layer, | 172 |
| abstract_inverted_index.method | 64, 106 |
| abstract_inverted_index.models | 14 |
| abstract_inverted_index.myriad | 249 |
| abstract_inverted_index.neural | 3, 36 |
| abstract_inverted_index.online | 208 |
| abstract_inverted_index.scales | 17 |
| abstract_inverted_index.simple | 140 |
| abstract_inverted_index.stable | 56 |
| abstract_inverted_index.against | 157 |
| abstract_inverted_index.capture | 163 |
| abstract_inverted_index.climate | 26, 245 |
| abstract_inverted_index.employs | 66 |
| abstract_inverted_index.explore | 1 |
| abstract_inverted_index.fluxes. | 112 |
| abstract_inverted_index.forward | 235 |
| abstract_inverted_index.improve | 77 |
| abstract_inverted_index.machine | 218 |
| abstract_inverted_index.models, | 161 |
| abstract_inverted_index.models. | 27 |
| abstract_inverted_index.oceanic | 126 |
| abstract_inverted_index.opening | 247 |
| abstract_inverted_index.process | 144 |
| abstract_inverted_index.provide | 231 |
| abstract_inverted_index.readily | 47 |
| abstract_inverted_index.reduces | 97 |
| abstract_inverted_index.through | 82 |
| abstract_inverted_index.trained | 9 |
| abstract_inverted_index.accuracy | 223 |
| abstract_inverted_index.advocate | 62 |
| abstract_inverted_index.approach | 210 |
| abstract_inverted_index.boundary | 52, 127 |
| abstract_inverted_index.buoyancy | 131 |
| abstract_inverted_index.captured | 91 |
| abstract_inverted_index.commonly | 185 |
| abstract_inverted_index.conclude | 228 |
| abstract_inverted_index.consider | 118 |
| abstract_inverted_index.example, | 116 |
| abstract_inverted_index.exciting | 233 |
| abstract_inverted_index.existing | 80, 184 |
| abstract_inverted_index.explicit | 160 |
| abstract_inverted_index.improved | 151 |
| abstract_inverted_index.improves | 222 |
| abstract_inverted_index.learning | 219 |
| abstract_inverted_index.networks | 37 |
| abstract_inverted_index.nonlocal | 111 |
| abstract_inverted_index.overcome | 29 |
| abstract_inverted_index.performs | 199 |
| abstract_inverted_index.required | 102 |
| abstract_inverted_index.residual | 86 |
| abstract_inverted_index.resolved | 12, 159 |
| abstract_inverted_index.science, | 246 |
| abstract_inverted_index.showcase | 195 |
| abstract_inverted_index.software | 220 |
| abstract_inverted_index.surface. | 135 |
| abstract_inverted_index.training | 101, 154, 209 |
| abstract_inverted_index.K-Profile | 191 |
| abstract_inverted_index.approach, | 69 |
| abstract_inverted_index.augmented | 181 |
| abstract_inverted_index.capturing | 108 |
| abstract_inverted_index.dynamical | 41 |
| abstract_inverted_index.equations | 5 |
| abstract_inverted_index.framework | 21 |
| abstract_inverted_index.processes | 243 |
| abstract_inverted_index.providing | 18, 104 |
| abstract_inverted_index.triggered | 129 |
| abstract_inverted_index.'residual' | 68 |
| abstract_inverted_index.adjustment | 147, 176 |
| abstract_inverted_index.conditions | 53 |
| abstract_inverted_index.convection | 123 |
| abstract_inverted_index.convective | 146, 175 |
| abstract_inverted_index.integrated | 58 |
| abstract_inverted_index.represent. | 179 |
| abstract_inverted_index.scientific | 217 |
| abstract_inverted_index.simulation | 213 |
| abstract_inverted_index.unresolved | 16 |
| abstract_inverted_index.well-mixed | 171 |
| abstract_inverted_index.data-driven | 23 |
| abstract_inverted_index.demonstrate | 137 |
| abstract_inverted_index.development | 238 |
| abstract_inverted_index.entrainment | 164 |
| abstract_inverted_index.incorporate | 48 |
| abstract_inverted_index.independent | 201 |
| abstract_inverted_index.limitations | 33 |
| abstract_inverted_index.outperforms | 183 |
| abstract_inverted_index.traditional | 35 |
| abstract_inverted_index.up-gradient | 109 |
| abstract_inverted_index.applications | 42 |
| abstract_inverted_index.conservation | 49 |
| abstract_inverted_index.differential | 4 |
| abstract_inverted_index.illustrative | 115 |
| abstract_inverted_index.time-stepper | 204 |
| abstract_inverted_index.differentiable | 212 |
| abstract_inverted_index.opportunities. | 251 |
| abstract_inverted_index.representation | 84 |
| abstract_inverted_index.sub-grid-scale | 242 |
| abstract_inverted_index.fluid-dynamical | 13 |
| abstract_inverted_index.representations | 240 |
| abstract_inverted_index.Parameterization | 192 |
| abstract_inverted_index.parameterization | 81, 120, 141, 182 |
| abstract_inverted_index.parameterization. | 95 |
| abstract_inverted_index.parameterizations | 24, 187 |
| abstract_inverted_index.order-of-magnitude. | 226 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |