Carbon market risk estimation using quantum conditional generative adversarial network and amplitude estimation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1049/enc2.12122
Accurately and efficiently estimating the carbon market risk is paramount for ensuring financial stability, promoting environmental sustainability, and facilitating informed decision‐making. Although classical risk estimation methods are extensively utilized, the implicit pre‐assumptions regarding distribution are predominantly contained and challenging to balance accuracy and computational efficiency. A quantum computing‐based carbon market risk estimation framework is proposed to address this problem with the quantum conditional generative adversarial network‐quantum amplitude estimation (QCGAN‐QAE) algorithm. Specifically, quantum conditional generative adversarial network (QCGAN) is employed to simulate the future distribution of the generated return rate, whereas quantum amplitude estimation (QAE) is employed to measure the distribution. Moreover, the quantum circuit of the QCGAN improved by reordering the data interaction layer and data simulation layer is coupled with the introduction of the quantum fully connected layer. The binary search method is incorporated into the QAE to bolster the computational efficiency. The simulation results based on the European Union Emissions Trading System reveals that the proposed framework markedly enhances the efficiency and precision of value‐at‐risk and conditional value‐at‐risk compared to original methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/enc2.12122
- OA Status
- gold
- Cited By
- 8
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401471069
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401471069Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/enc2.12122Digital Object Identifier
- Title
-
Carbon market risk estimation using quantum conditional generative adversarial network and amplitude estimationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-01Full publication date if available
- Authors
-
Xiyuan Zhou, Huan Zhao, Yuji Cao, Fei Xiang, Gaoqi Liang, Junhua ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1049/enc2.12122Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/enc2.12122Direct OA link when available
- Concepts
-
Estimation, Generative grammar, Econometrics, Amplitude, Generative adversarial network, Mathematics, Computer science, Artificial intelligence, Statistics, Economics, Deep learning, Physics, Management, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401471069 |
|---|---|
| doi | https://doi.org/10.1049/enc2.12122 |
| ids.doi | https://doi.org/10.1049/enc2.12122 |
| ids.openalex | https://openalex.org/W4401471069 |
| fwci | 7.65218157 |
| type | article |
| title | Carbon market risk estimation using quantum conditional generative adversarial network and amplitude estimation |
| awards[0].id | https://openalex.org/G6125072665 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 72331009 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G2289803546 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 72171206 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G3839045215 |
| awards[2].funder_id | https://openalex.org/F4320335822 |
| awards[2].display_name | |
| awards[2].funder_award_id | 036000KC23090003(GDKJXM20231024) |
| awards[2].funder_display_name | Guangdong Power Grid Company |
| biblio.issue | 4 |
| biblio.volume | 5 |
| biblio.last_page | 210 |
| biblio.first_page | 193 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9729999899864197 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9704999923706055 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9559000134468079 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335822 |
| funders[1].ror | |
| funders[1].display_name | Guangdong Power Grid Company |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C96250715 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7646100521087646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[0].display_name | Estimation |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.557278573513031 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4862765073776245 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C180205008 |
| concepts[3].level | 2 |
| concepts[3].score | 0.47328680753707886 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q159190 |
| concepts[3].display_name | Amplitude |
| concepts[4].id | https://openalex.org/C2988773926 |
| concepts[4].level | 3 |
| concepts[4].score | 0.44811469316482544 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25104379 |
| concepts[4].display_name | Generative adversarial network |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.37116914987564087 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3651542067527771 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3264882564544678 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3232858180999756 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C162324750 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3022118806838989 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[9].display_name | Economics |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.10372725129127502 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08898815512657166 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C187736073 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[12].display_name | Management |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/estimation |
| keywords[0].score | 0.7646100521087646 |
| keywords[0].display_name | Estimation |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.557278573513031 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.4862765073776245 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/amplitude |
| keywords[3].score | 0.47328680753707886 |
| keywords[3].display_name | Amplitude |
| keywords[4].id | https://openalex.org/keywords/generative-adversarial-network |
| keywords[4].score | 0.44811469316482544 |
| keywords[4].display_name | Generative adversarial network |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.37116914987564087 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3651542067527771 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3264882564544678 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.3232858180999756 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/economics |
| keywords[9].score | 0.3022118806838989 |
| keywords[9].display_name | Economics |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.10372725129127502 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.08898815512657166 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1049/enc2.12122 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210204168 |
| locations[0].source.issn | 2634-1581 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2634-1581 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energy Conversion and Economics |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy Conversion and Economics |
| locations[0].landing_page_url | https://doi.org/10.1049/enc2.12122 |
| locations[1].id | pmh:oai:doaj.org/article:8e7ce9901b1546e2958ee1fd572a7802 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energy Conversion and Economics, Vol 5, Iss 4, Pp 193-210 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/8e7ce9901b1546e2958ee1fd572a7802 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102598785 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-1516-5069 |
| authorships[0].author.display_name | Xiyuan Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210116924 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210116924 |
| authorships[0].institutions[0].ror | https://ror.org/02d5ks197 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177725633, https://openalex.org/I180726961, https://openalex.org/I4210116924 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese University of Hong Kong, Shenzhen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiyuan Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China |
| authorships[1].author.id | https://openalex.org/A5011902043 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3133-3137 |
| authorships[1].author.display_name | Huan Zhao |
| authorships[1].countries | SG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I172675005 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore |
| authorships[1].institutions[0].id | https://openalex.org/I172675005 |
| authorships[1].institutions[0].ror | https://ror.org/02e7b5302 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I172675005 |
| authorships[1].institutions[0].country_code | SG |
| authorships[1].institutions[0].display_name | Nanyang Technological University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huan Zhao |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore |
| authorships[2].author.id | https://openalex.org/A5051703324 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8664-0823 |
| authorships[2].author.display_name | Yuji Cao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210104064 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Crowd Intelligence, Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210104064 |
| authorships[2].institutions[0].ror | https://ror.org/01h027j09 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210104064 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen Academy of Robotics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuji Cao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Crowd Intelligence, Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong, China |
| authorships[3].author.id | https://openalex.org/A5035028005 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5397-8481 |
| authorships[3].author.display_name | Fei Xiang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210116924 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Data Science, The Chinese University of Hong Kong, Shenzhen, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210116924 |
| authorships[3].institutions[0].ror | https://ror.org/02d5ks197 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I177725633, https://openalex.org/I180726961, https://openalex.org/I4210116924 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese University of Hong Kong, Shenzhen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiang Fei |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Data Science, The Chinese University of Hong Kong, Shenzhen, China |
| authorships[4].author.id | https://openalex.org/A5090253720 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9060-1675 |
| authorships[4].author.display_name | Gaoqi Liang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China |
| authorships[4].institutions[0].id | https://openalex.org/I204983213 |
| authorships[4].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Harbin Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gaoqi Liang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China |
| authorships[5].author.id | https://openalex.org/A5065487554 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5446-2655 |
| authorships[5].author.display_name | Junhua Zhao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210116924 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210104064 |
| authorships[5].affiliations[1].raw_affiliation_string | Center for Crowd Intelligence, Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210116924 |
| authorships[5].institutions[0].ror | https://ror.org/02d5ks197 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I177725633, https://openalex.org/I180726961, https://openalex.org/I4210116924 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese University of Hong Kong, Shenzhen |
| authorships[5].institutions[1].id | https://openalex.org/I4210104064 |
| authorships[5].institutions[1].ror | https://ror.org/01h027j09 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210104064 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Shenzhen Academy of Robotics |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Junhua Zhao |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Center for Crowd Intelligence, Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong, China, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/enc2.12122 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Carbon market risk estimation using quantum conditional generative adversarial network and amplitude estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9729999899864197 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2380075625, https://openalex.org/W4390718435, https://openalex.org/W2888032422, https://openalex.org/W2996316059, https://openalex.org/W4377980832, https://openalex.org/W2897769091, https://openalex.org/W2845413374, https://openalex.org/W3005996785, https://openalex.org/W4297411772, https://openalex.org/W4235873501 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/enc2.12122 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210204168 |
| best_oa_location.source.issn | 2634-1581 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2634-1581 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energy Conversion and Economics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy Conversion and Economics |
| best_oa_location.landing_page_url | https://doi.org/10.1049/enc2.12122 |
| primary_location.id | doi:10.1049/enc2.12122 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210204168 |
| primary_location.source.issn | 2634-1581 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2634-1581 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energy Conversion and Economics |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy Conversion and Economics |
| primary_location.landing_page_url | https://doi.org/10.1049/enc2.12122 |
| publication_date | 2024-08-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4206993074, https://openalex.org/W2130171260, https://openalex.org/W2911494597, https://openalex.org/W2904194736, https://openalex.org/W4284993503, https://openalex.org/W2790792007, https://openalex.org/W3018089439, https://openalex.org/W2970486030, https://openalex.org/W2083545691, https://openalex.org/W3213015159, https://openalex.org/W3003126509, https://openalex.org/W2973723419, https://openalex.org/W2024653686, https://openalex.org/W3037022125, https://openalex.org/W3105221311, https://openalex.org/W3101502877, https://openalex.org/W4296095650, https://openalex.org/W4385213591, https://openalex.org/W2911423727, https://openalex.org/W2765811365, https://openalex.org/W2125389028, https://openalex.org/W2121981260, https://openalex.org/W3013171253, https://openalex.org/W2577686957, https://openalex.org/W3048543682, https://openalex.org/W3092977835, https://openalex.org/W4308033654, https://openalex.org/W3082455048, https://openalex.org/W2945680873, https://openalex.org/W2980456669, https://openalex.org/W2144655069, https://openalex.org/W3122575960, https://openalex.org/W3022142691, https://openalex.org/W4285222773, https://openalex.org/W3159416731, https://openalex.org/W3135377759, https://openalex.org/W4383225765, https://openalex.org/W3098181014, https://openalex.org/W3102427691, https://openalex.org/W3101427288, https://openalex.org/W2207686624, https://openalex.org/W3037315640, https://openalex.org/W3104112685, https://openalex.org/W3098477102, https://openalex.org/W3104240171, https://openalex.org/W3104355132, https://openalex.org/W4310988991, https://openalex.org/W3138943493 |
| referenced_works_count | 48 |
| abstract_inverted_index.A | 46 |
| abstract_inverted_index.by | 109 |
| abstract_inverted_index.is | 9, 54, 78, 95, 119, 134 |
| abstract_inverted_index.of | 85, 105, 124, 166 |
| abstract_inverted_index.on | 148 |
| abstract_inverted_index.to | 40, 56, 80, 97, 139, 172 |
| abstract_inverted_index.QAE | 138 |
| abstract_inverted_index.The | 130, 144 |
| abstract_inverted_index.and | 2, 18, 38, 43, 115, 164, 168 |
| abstract_inverted_index.are | 27, 35 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.the | 5, 30, 61, 82, 86, 99, 102, 106, 111, 122, 125, 137, 141, 149, 157, 162 |
| abstract_inverted_index.data | 112, 116 |
| abstract_inverted_index.into | 136 |
| abstract_inverted_index.risk | 8, 24, 51 |
| abstract_inverted_index.that | 156 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.with | 60, 121 |
| abstract_inverted_index.(QAE) | 94 |
| abstract_inverted_index.QCGAN | 107 |
| abstract_inverted_index.Union | 151 |
| abstract_inverted_index.based | 147 |
| abstract_inverted_index.fully | 127 |
| abstract_inverted_index.layer | 114, 118 |
| abstract_inverted_index.rate, | 89 |
| abstract_inverted_index.System | 154 |
| abstract_inverted_index.binary | 131 |
| abstract_inverted_index.carbon | 6, 49 |
| abstract_inverted_index.future | 83 |
| abstract_inverted_index.layer. | 129 |
| abstract_inverted_index.market | 7, 50 |
| abstract_inverted_index.method | 133 |
| abstract_inverted_index.return | 88 |
| abstract_inverted_index.search | 132 |
| abstract_inverted_index.(QCGAN) | 77 |
| abstract_inverted_index.Trading | 153 |
| abstract_inverted_index.address | 57 |
| abstract_inverted_index.balance | 41 |
| abstract_inverted_index.bolster | 140 |
| abstract_inverted_index.circuit | 104 |
| abstract_inverted_index.coupled | 120 |
| abstract_inverted_index.measure | 98 |
| abstract_inverted_index.methods | 26 |
| abstract_inverted_index.network | 76 |
| abstract_inverted_index.problem | 59 |
| abstract_inverted_index.quantum | 47, 62, 72, 91, 103, 126 |
| abstract_inverted_index.results | 146 |
| abstract_inverted_index.reveals | 155 |
| abstract_inverted_index.whereas | 90 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 22 |
| abstract_inverted_index.European | 150 |
| abstract_inverted_index.accuracy | 42 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.employed | 79, 96 |
| abstract_inverted_index.enhances | 161 |
| abstract_inverted_index.ensuring | 12 |
| abstract_inverted_index.implicit | 31 |
| abstract_inverted_index.improved | 108 |
| abstract_inverted_index.informed | 20 |
| abstract_inverted_index.markedly | 160 |
| abstract_inverted_index.methods. | 174 |
| abstract_inverted_index.original | 173 |
| abstract_inverted_index.proposed | 55, 158 |
| abstract_inverted_index.simulate | 81 |
| abstract_inverted_index.Emissions | 152 |
| abstract_inverted_index.Moreover, | 101 |
| abstract_inverted_index.amplitude | 67, 92 |
| abstract_inverted_index.classical | 23 |
| abstract_inverted_index.connected | 128 |
| abstract_inverted_index.contained | 37 |
| abstract_inverted_index.financial | 13 |
| abstract_inverted_index.framework | 53, 159 |
| abstract_inverted_index.generated | 87 |
| abstract_inverted_index.paramount | 10 |
| abstract_inverted_index.precision | 165 |
| abstract_inverted_index.promoting | 15 |
| abstract_inverted_index.regarding | 33 |
| abstract_inverted_index.utilized, | 29 |
| abstract_inverted_index.Accurately | 1 |
| abstract_inverted_index.algorithm. | 70 |
| abstract_inverted_index.efficiency | 163 |
| abstract_inverted_index.estimating | 4 |
| abstract_inverted_index.estimation | 25, 52, 68, 93 |
| abstract_inverted_index.generative | 64, 74 |
| abstract_inverted_index.reordering | 110 |
| abstract_inverted_index.simulation | 117, 145 |
| abstract_inverted_index.stability, | 14 |
| abstract_inverted_index.adversarial | 65, 75 |
| abstract_inverted_index.challenging | 39 |
| abstract_inverted_index.conditional | 63, 73, 169 |
| abstract_inverted_index.efficiency. | 45, 143 |
| abstract_inverted_index.efficiently | 3 |
| abstract_inverted_index.extensively | 28 |
| abstract_inverted_index.interaction | 113 |
| abstract_inverted_index.distribution | 34, 84 |
| abstract_inverted_index.facilitating | 19 |
| abstract_inverted_index.incorporated | 135 |
| abstract_inverted_index.introduction | 123 |
| abstract_inverted_index.(QCGAN‐QAE) | 69 |
| abstract_inverted_index.Specifically, | 71 |
| abstract_inverted_index.computational | 44, 142 |
| abstract_inverted_index.distribution. | 100 |
| abstract_inverted_index.environmental | 16 |
| abstract_inverted_index.predominantly | 36 |
| abstract_inverted_index.sustainability, | 17 |
| abstract_inverted_index.computing‐based | 48 |
| abstract_inverted_index.network‐quantum | 66 |
| abstract_inverted_index.pre‐assumptions | 32 |
| abstract_inverted_index.value‐at‐risk | 167, 170 |
| abstract_inverted_index.decision‐making. | 21 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5065487554, https://openalex.org/A5011902043 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I172675005, https://openalex.org/I4210104064, https://openalex.org/I4210116924 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.95589661 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |