Cardiomegaly Detection on Chest Radiographs: Segmentation Versus Classification Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/access.2020.2995567
In this study, we investigate the detection of cardiomegaly on frontal chest radiographs through two alternative deep-learning approaches - via anatomical segmentation and via image-level classification. We used the publicly available ChestX-ray14 dataset, and obtained heart and lung segmentation annotations for 778 chest radiographs for the development of the segmentation-based approach. The classification-based method was trained with 65k standard chest radiographs with image-level labels. For both approaches, the best models were found through hyperparameter searches where architectural, learning, and regularization related parameters were optimized systematically. The resulting models were tested on a set of 367 held-out images for which cardiomegaly annotations were hand-labeled by two independent expert radiologists. Sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC) were calculated. The performance of the segmentation-based system with an AUC of 0.977 is significantly better for classifying cardiomegaly than the classification-based model which achieved an AUC of 0.941. Only the segmentation-based model achieved comparable performance to an independent expert reader (AUC of 0.978). We conclude that the segmentation-based model requires 100 times fewer annotated chest radiographs to achieve a substantially better performance, while also producing more interpretable results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2020.2995567
- https://ieeexplore.ieee.org/ielx7/6287639/8948470/09096290.pdf
- OA Status
- gold
- Cited By
- 53
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3028577876
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3028577876Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2020.2995567Digital Object Identifier
- Title
-
Cardiomegaly Detection on Chest Radiographs: Segmentation Versus ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Ecem Sogancioglu, Keelin Murphy, Erdi Çallı, Ernst T. Scholten, Steven Schalekamp, Bram van GinnekenList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2020.2995567Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09096290.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09096290.pdfDirect OA link when available
- Concepts
-
Segmentation, Receiver operating characteristic, Hyperparameter, Artificial intelligence, Computer science, Radiography, Pattern recognition (psychology), Image segmentation, Radiology, Machine learning, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
53Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 14, 2023: 12, 2022: 13, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3028577876 |
|---|---|
| doi | https://doi.org/10.1109/access.2020.2995567 |
| ids.doi | https://doi.org/10.1109/access.2020.2995567 |
| ids.mag | 3028577876 |
| ids.openalex | https://openalex.org/W3028577876 |
| fwci | 4.02288723 |
| type | article |
| title | Cardiomegaly Detection on Chest Radiographs: Segmentation Versus Classification |
| awards[0].id | https://openalex.org/G623399117 |
| awards[0].funder_id | https://openalex.org/F4320334893 |
| awards[0].display_name | |
| awards[0].funder_award_id | P15-26 |
| awards[0].funder_display_name | Stichting voor de Technische Wetenschappen |
| biblio.issue | |
| biblio.volume | 8 |
| biblio.last_page | 94642 |
| biblio.first_page | 94631 |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.987500011920929 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T11894 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9824000000953674 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiology practices and education |
| funders[0].id | https://openalex.org/F4320334893 |
| funders[0].ror | https://ror.org/057tq3593 |
| funders[0].display_name | Stichting voor de Technische Wetenschappen |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7685651183128357 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C58471807 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7053079605102539 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[1].display_name | Receiver operating characteristic |
| concepts[2].id | https://openalex.org/C8642999 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6932482719421387 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[2].display_name | Hyperparameter |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6895641088485718 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6856775879859924 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C36454342 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5615421533584595 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245341 |
| concepts[5].display_name | Radiography |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5285030007362366 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4440808892250061 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32002949714660645 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.29063472151756287 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.23428431153297424 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7685651183128357 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[1].score | 0.7053079605102539 |
| keywords[1].display_name | Receiver operating characteristic |
| keywords[2].id | https://openalex.org/keywords/hyperparameter |
| keywords[2].score | 0.6932482719421387 |
| keywords[2].display_name | Hyperparameter |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6895641088485718 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6856775879859924 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/radiography |
| keywords[5].score | 0.5615421533584595 |
| keywords[5].display_name | Radiography |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5285030007362366 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.4440808892250061 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.32002949714660645 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.29063472151756287 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.23428431153297424 |
| keywords[10].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1109/access.2020.2995567 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09096290.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2020.2995567 |
| locations[1].id | pmh:ru:oai:repository.ubn.ru.nl:2066/220277 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401843 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[1].source.host_organization | https://openalex.org/I1322597698 |
| locations[1].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[1].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[1].license | other-oa |
| locations[1].pdf_url | http://hdl.handle.net/2066/220277 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, 8, 94631 - 94642 |
| locations[1].landing_page_url | http://hdl.handle.net/2066/220277 |
| locations[2].id | pmh:oai:doaj.org/article:9fad30d8aeb74cd287d5c0af5fdc70ce |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Access, Vol 8, Pp 94631-94642 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/9fad30d8aeb74cd287d5c0af5fdc70ce |
| locations[3].id | pmh:oai:repository.ubn.ru.nl:2066/220277 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401067 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Radboud Repository (Radboud University) |
| locations[3].source.host_organization | https://openalex.org/I145872427 |
| locations[3].source.host_organization_name | Radboud University Nijmegen |
| locations[3].source.host_organization_lineage | https://openalex.org/I145872427 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Article / Letter to editor |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://hdl.handle.net/2066/220277 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5013479475 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8850-8121 |
| authorships[0].author.display_name | Ecem Sogancioglu |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145872427, https://openalex.org/I2802934949 |
| authorships[0].affiliations[0].raw_affiliation_string | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I2802934949 |
| authorships[0].institutions[0].ror | https://ror.org/05wg1m734 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2802934949 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Radboud University Medical Center |
| authorships[0].institutions[1].id | https://openalex.org/I145872427 |
| authorships[0].institutions[1].ror | https://ror.org/016xsfp80 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I145872427 |
| authorships[0].institutions[1].country_code | NL |
| authorships[0].institutions[1].display_name | Radboud University Nijmegen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ecem Sogancioglu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[1].author.id | https://openalex.org/A5053348129 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6831-4020 |
| authorships[1].author.display_name | Keelin Murphy |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145872427, https://openalex.org/I2802934949 |
| authorships[1].affiliations[0].raw_affiliation_string | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I2802934949 |
| authorships[1].institutions[0].ror | https://ror.org/05wg1m734 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2802934949 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Radboud University Medical Center |
| authorships[1].institutions[1].id | https://openalex.org/I145872427 |
| authorships[1].institutions[1].ror | https://ror.org/016xsfp80 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I145872427 |
| authorships[1].institutions[1].country_code | NL |
| authorships[1].institutions[1].display_name | Radboud University Nijmegen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Keelin Murphy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[2].author.id | https://openalex.org/A5000906476 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3962-7276 |
| authorships[2].author.display_name | Erdi Çallı |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145872427, https://openalex.org/I2802934949 |
| authorships[2].affiliations[0].raw_affiliation_string | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I2802934949 |
| authorships[2].institutions[0].ror | https://ror.org/05wg1m734 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2802934949 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Radboud University Medical Center |
| authorships[2].institutions[1].id | https://openalex.org/I145872427 |
| authorships[2].institutions[1].ror | https://ror.org/016xsfp80 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I145872427 |
| authorships[2].institutions[1].country_code | NL |
| authorships[2].institutions[1].display_name | Radboud University Nijmegen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Erdi Calli |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[3].author.id | https://openalex.org/A5076461780 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1982-2763 |
| authorships[3].author.display_name | Ernst T. Scholten |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145872427, https://openalex.org/I2802934949 |
| authorships[3].affiliations[0].raw_affiliation_string | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[3].institutions[0].id | https://openalex.org/I2802934949 |
| authorships[3].institutions[0].ror | https://ror.org/05wg1m734 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2802934949 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | Radboud University Medical Center |
| authorships[3].institutions[1].id | https://openalex.org/I145872427 |
| authorships[3].institutions[1].ror | https://ror.org/016xsfp80 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I145872427 |
| authorships[3].institutions[1].country_code | NL |
| authorships[3].institutions[1].display_name | Radboud University Nijmegen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ernst T. Scholten |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[4].author.id | https://openalex.org/A5074610940 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3984-3596 |
| authorships[4].author.display_name | Steven Schalekamp |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145872427, https://openalex.org/I2802934949 |
| authorships[4].affiliations[0].raw_affiliation_string | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[4].institutions[0].id | https://openalex.org/I2802934949 |
| authorships[4].institutions[0].ror | https://ror.org/05wg1m734 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2802934949 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | Radboud University Medical Center |
| authorships[4].institutions[1].id | https://openalex.org/I145872427 |
| authorships[4].institutions[1].ror | https://ror.org/016xsfp80 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I145872427 |
| authorships[4].institutions[1].country_code | NL |
| authorships[4].institutions[1].display_name | Radboud University Nijmegen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Steven Schalekamp |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[5].author.id | https://openalex.org/A5042982766 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2028-8972 |
| authorships[5].author.display_name | Bram van Ginneken |
| authorships[5].countries | NL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I145872427, https://openalex.org/I2802934949 |
| authorships[5].affiliations[0].raw_affiliation_string | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| authorships[5].institutions[0].id | https://openalex.org/I2802934949 |
| authorships[5].institutions[0].ror | https://ror.org/05wg1m734 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I2802934949 |
| authorships[5].institutions[0].country_code | NL |
| authorships[5].institutions[0].display_name | Radboud University Medical Center |
| authorships[5].institutions[1].id | https://openalex.org/I145872427 |
| authorships[5].institutions[1].ror | https://ror.org/016xsfp80 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I145872427 |
| authorships[5].institutions[1].country_code | NL |
| authorships[5].institutions[1].display_name | Radboud University Nijmegen |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Bram Van Ginneken |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09096290.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cardiomegaly Detection on Chest Radiographs: Segmentation Versus Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W4390421286, https://openalex.org/W4280563792, https://openalex.org/W2140186469, https://openalex.org/W4389724018, https://openalex.org/W4318719684, https://openalex.org/W2775233965, https://openalex.org/W4318559728, https://openalex.org/W4360995913, https://openalex.org/W4312193868, https://openalex.org/W1522196789 |
| cited_by_count | 53 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 14 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 12 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 13 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1109/access.2020.2995567 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09096290.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2020.2995567 |
| primary_location.id | doi:10.1109/access.2020.2995567 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8948470/09096290.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2020.2995567 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W6745119210, https://openalex.org/W2611650229, https://openalex.org/W6750490547, https://openalex.org/W6639824700, https://openalex.org/W6737985840, https://openalex.org/W2901954625, https://openalex.org/W2024798729, https://openalex.org/W2097117768, https://openalex.org/W6674330103, https://openalex.org/W2142514727, https://openalex.org/W6685562342, https://openalex.org/W6748973254, https://openalex.org/W2053154970, https://openalex.org/W6734153230, https://openalex.org/W2152772232, https://openalex.org/W2018153793, https://openalex.org/W6681435938, https://openalex.org/W1964404845, https://openalex.org/W6748557511, https://openalex.org/W2194775991, https://openalex.org/W2986571455, https://openalex.org/W2767106145, https://openalex.org/W2146272590, https://openalex.org/W1437335841, https://openalex.org/W2921123293, https://openalex.org/W6758687326, https://openalex.org/W2898859377, https://openalex.org/W2903686131, https://openalex.org/W6700115065, https://openalex.org/W2962838801, https://openalex.org/W2897666251, https://openalex.org/W6713134421, https://openalex.org/W2963446712, https://openalex.org/W2963466845, https://openalex.org/W6638667902, https://openalex.org/W6739879593, https://openalex.org/W2995225687, https://openalex.org/W2054459636, https://openalex.org/W2929617806, https://openalex.org/W2963454111, https://openalex.org/W1901129140, https://openalex.org/W2320139349, https://openalex.org/W2953384591, https://openalex.org/W2618574054, https://openalex.org/W2799108307, https://openalex.org/W2791966318, https://openalex.org/W1836465849, https://openalex.org/W3101156210, https://openalex.org/W2146502635, https://openalex.org/W2095705004, https://openalex.org/W2912664121, https://openalex.org/W4295608163, https://openalex.org/W2963285578, https://openalex.org/W2591789961, https://openalex.org/W2963942157 |
| referenced_works_count | 55 |
| abstract_inverted_index.- | 18 |
| abstract_inverted_index.a | 91, 184 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 26, 169 |
| abstract_inverted_index.an | 134, 150, 162 |
| abstract_inverted_index.by | 103 |
| abstract_inverted_index.is | 138 |
| abstract_inverted_index.of | 7, 47, 93, 129, 136, 152, 167 |
| abstract_inverted_index.on | 9, 90 |
| abstract_inverted_index.to | 161, 182 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.100 | 176 |
| abstract_inverted_index.367 | 94 |
| abstract_inverted_index.65k | 57 |
| abstract_inverted_index.778 | 41 |
| abstract_inverted_index.AUC | 135, 151 |
| abstract_inverted_index.For | 64 |
| abstract_inverted_index.The | 51, 85, 127 |
| abstract_inverted_index.and | 22, 33, 36, 78, 116 |
| abstract_inverted_index.for | 40, 44, 97, 141 |
| abstract_inverted_index.set | 92 |
| abstract_inverted_index.the | 5, 28, 45, 48, 67, 119, 130, 145, 155, 172 |
| abstract_inverted_index.two | 14, 104 |
| abstract_inverted_index.via | 19, 23 |
| abstract_inverted_index.was | 54 |
| abstract_inverted_index.(AUC | 166 |
| abstract_inverted_index.Only | 154 |
| abstract_inverted_index.also | 189 |
| abstract_inverted_index.area | 117 |
| abstract_inverted_index.best | 68 |
| abstract_inverted_index.both | 65 |
| abstract_inverted_index.lung | 37 |
| abstract_inverted_index.more | 191 |
| abstract_inverted_index.than | 144 |
| abstract_inverted_index.that | 171 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.used | 27 |
| abstract_inverted_index.were | 70, 82, 88, 101, 125 |
| abstract_inverted_index.with | 56, 61, 133 |
| abstract_inverted_index.(AUC) | 124 |
| abstract_inverted_index.0.977 | 137 |
| abstract_inverted_index.chest | 11, 42, 59, 180 |
| abstract_inverted_index.curve | 123 |
| abstract_inverted_index.fewer | 178 |
| abstract_inverted_index.found | 71 |
| abstract_inverted_index.heart | 35 |
| abstract_inverted_index.model | 147, 157, 174 |
| abstract_inverted_index.times | 177 |
| abstract_inverted_index.under | 118 |
| abstract_inverted_index.where | 75 |
| abstract_inverted_index.which | 98, 148 |
| abstract_inverted_index.while | 188 |
| abstract_inverted_index.0.941. | 153 |
| abstract_inverted_index.better | 140, 186 |
| abstract_inverted_index.expert | 106, 164 |
| abstract_inverted_index.images | 96 |
| abstract_inverted_index.method | 53 |
| abstract_inverted_index.models | 69, 87 |
| abstract_inverted_index.reader | 165 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.system | 132 |
| abstract_inverted_index.tested | 89 |
| abstract_inverted_index.value, | 112, 115 |
| abstract_inverted_index.0.978). | 168 |
| abstract_inverted_index.achieve | 183 |
| abstract_inverted_index.frontal | 10 |
| abstract_inverted_index.labels. | 63 |
| abstract_inverted_index.related | 80 |
| abstract_inverted_index.through | 13, 72 |
| abstract_inverted_index.trained | 55 |
| abstract_inverted_index.achieved | 149, 158 |
| abstract_inverted_index.conclude | 170 |
| abstract_inverted_index.dataset, | 32 |
| abstract_inverted_index.held-out | 95 |
| abstract_inverted_index.negative | 113 |
| abstract_inverted_index.obtained | 34 |
| abstract_inverted_index.positive | 110 |
| abstract_inverted_index.publicly | 29 |
| abstract_inverted_index.receiver | 120 |
| abstract_inverted_index.requires | 175 |
| abstract_inverted_index.results. | 193 |
| abstract_inverted_index.searches | 74 |
| abstract_inverted_index.standard | 58 |
| abstract_inverted_index.annotated | 179 |
| abstract_inverted_index.approach. | 50 |
| abstract_inverted_index.available | 30 |
| abstract_inverted_index.detection | 6 |
| abstract_inverted_index.learning, | 77 |
| abstract_inverted_index.operating | 121 |
| abstract_inverted_index.optimized | 83 |
| abstract_inverted_index.producing | 190 |
| abstract_inverted_index.resulting | 86 |
| abstract_inverted_index.anatomical | 20 |
| abstract_inverted_index.approaches | 17 |
| abstract_inverted_index.comparable | 159 |
| abstract_inverted_index.parameters | 81 |
| abstract_inverted_index.predictive | 111, 114 |
| abstract_inverted_index.alternative | 15 |
| abstract_inverted_index.annotations | 39, 100 |
| abstract_inverted_index.approaches, | 66 |
| abstract_inverted_index.calculated. | 126 |
| abstract_inverted_index.classifying | 142 |
| abstract_inverted_index.development | 46 |
| abstract_inverted_index.image-level | 24, 62 |
| abstract_inverted_index.independent | 105, 163 |
| abstract_inverted_index.investigate | 4 |
| abstract_inverted_index.performance | 128, 160 |
| abstract_inverted_index.radiographs | 12, 43, 60, 181 |
| abstract_inverted_index.ChestX-ray14 | 31 |
| abstract_inverted_index.Sensitivity, | 108 |
| abstract_inverted_index.cardiomegaly | 8, 99, 143 |
| abstract_inverted_index.hand-labeled | 102 |
| abstract_inverted_index.performance, | 187 |
| abstract_inverted_index.segmentation | 21, 38 |
| abstract_inverted_index.specificity, | 109 |
| abstract_inverted_index.deep-learning | 16 |
| abstract_inverted_index.interpretable | 192 |
| abstract_inverted_index.radiologists. | 107 |
| abstract_inverted_index.significantly | 139 |
| abstract_inverted_index.substantially | 185 |
| abstract_inverted_index.architectural, | 76 |
| abstract_inverted_index.characteristic | 122 |
| abstract_inverted_index.hyperparameter | 73 |
| abstract_inverted_index.regularization | 79 |
| abstract_inverted_index.classification. | 25 |
| abstract_inverted_index.systematically. | 84 |
| abstract_inverted_index.segmentation-based | 49, 131, 156, 173 |
| abstract_inverted_index.classification-based | 52, 146 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.94580314 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |