CASC-AI: Consensus-aware Self-corrective Learning for Noise Cell Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.07302
Multi-class cell segmentation in high-resolution gigapixel whole slide images (WSIs) is crucial for various clinical applications. However, training such models typically requires labor-intensive, pixel-wise annotations by domain experts. Recent efforts have democratized this process by involving lay annotators without medical expertise. However, conventional non-corrective approaches struggle to handle annotation noise adaptively because they lack mechanisms to mitigate false positives (FP) and false negatives (FN) at both the image-feature and pixel levels. In this paper, we propose a consensus-aware self-corrective AI agent that leverages the Consensus Matrix to guide its learning process. The Consensus Matrix defines regions where both the AI and annotators agree on cell and non-cell annotations, which are prioritized with stronger supervision. Conversely, areas of disagreement are adaptively weighted based on their feature similarity to high-confidence consensus regions, with more similar regions receiving greater attention. Additionally, contrastive learning is employed to separate features of noisy regions from those of reliable consensus regions by maximizing their dissimilarity. This paradigm enables the model to iteratively refine noisy labels, enhancing its robustness. Validated on one real-world lay-annotated cell dataset and two reasoning-guided simulated noisy datasets, our method demonstrates improved segmentation performance, effectively correcting FP and FN errors and showcasing its potential for training robust models on noisy datasets. The official implementation and cell annotations are publicly available at https://github.com/ddrrnn123/CASC-AI.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.07302
- https://arxiv.org/pdf/2502.07302
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407424336
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407424336Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.07302Digital Object Identifier
- Title
-
CASC-AI: Consensus-aware Self-corrective Learning for Noise Cell SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-11Full publication date if available
- Authors
-
Ruining Deng, Yihe Yang, David J. Pisapia, Benjamin Liechty, Junchao Zhu, Juming Xiong, Junlin Guo, Zhengyi Lu, Jiacheng Wang, Xing Yao, Renping Yu, Rendong Zhang, Gaurav Rudravaram, Mengmeng Yin, Pinaki Sarder, Haichun Yang, Yuankai Huo, Mert R. SabuncuList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.07302Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.07302Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.07302Direct OA link when available
- Concepts
-
Computer science, Segmentation, Noise (video), Artificial intelligence, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407424336 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.07302 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.07302 |
| ids.openalex | https://openalex.org/W4407424336 |
| fwci | |
| type | preprint |
| title | CASC-AI: Consensus-aware Self-corrective Learning for Noise Cell Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9379000067710876 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9247999787330627 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9146999716758728 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5530185103416443 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5388983488082886 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5288237929344177 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.46796685457229614 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5530185103416443 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.5388983488082886 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.5288237929344177 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.46796685457229614 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.07302 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.07302 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.07302 |
| locations[1].id | doi:10.48550/arxiv.2502.07302 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.07302 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5037133367 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6300-8518 |
| authorships[0].author.display_name | Ruining Deng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deng, Ruining |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051611729 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6563-3579 |
| authorships[1].author.display_name | Yihe Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Yihe |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089641133 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1528-8425 |
| authorships[2].author.display_name | David J. Pisapia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pisapia, David J. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006442618 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6485-5604 |
| authorships[3].author.display_name | Benjamin Liechty |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liechty, Benjamin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100838204 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Junchao Zhu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhu, Junchao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5111152727 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Juming Xiong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiong, Juming |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5073398749 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3388-1970 |
| authorships[6].author.display_name | Junlin Guo |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Guo, Junlin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5110162244 |
| authorships[7].author.orcid | https://orcid.org/0009-0003-4723-7187 |
| authorships[7].author.display_name | Zhengyi Lu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lu, Zhengyi |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100727954 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-7948-8525 |
| authorships[8].author.display_name | Jiacheng Wang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Wang, Jiacheng |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5058246030 |
| authorships[9].author.orcid | https://orcid.org/0009-0001-1861-7610 |
| authorships[9].author.display_name | Xing Yao |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yao, Xing |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5005466441 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-1348-5583 |
| authorships[10].author.display_name | Renping Yu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Yu, Runxuan |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5030608132 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Rendong Zhang |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Zhang, Rendong |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5083437826 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Gaurav Rudravaram |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Rudravaram, Gaurav |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5102820576 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Mengmeng Yin |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Yin, Mengmeng |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5044061952 |
| authorships[14].author.orcid | https://orcid.org/0000-0003-2450-5233 |
| authorships[14].author.display_name | Pinaki Sarder |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Sarder, Pinaki |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5081514433 |
| authorships[15].author.orcid | https://orcid.org/0000-0003-4265-7492 |
| authorships[15].author.display_name | Haichun Yang |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Yang, Haichun |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5067191302 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-2096-8065 |
| authorships[16].author.display_name | Yuankai Huo |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Huo, Yuankai |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5025877936 |
| authorships[17].author.orcid | https://orcid.org/0000-0002-7068-719X |
| authorships[17].author.display_name | Mert R. Sabuncu |
| authorships[17].author_position | last |
| authorships[17].raw_author_name | Sabuncu, Mert R. |
| authorships[17].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.07302 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-13T00:00:00 |
| display_name | CASC-AI: Consensus-aware Self-corrective Learning for Noise Cell Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9379000067710876 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.07302 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.07302 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.07302 |
| primary_location.id | pmh:oai:arXiv.org:2502.07302 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.07302 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.07302 |
| publication_date | 2025-02-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 76 |
| abstract_inverted_index.AI | 79, 99 |
| abstract_inverted_index.FN | 194 |
| abstract_inverted_index.FP | 192 |
| abstract_inverted_index.In | 71 |
| abstract_inverted_index.at | 64, 216 |
| abstract_inverted_index.by | 25, 34, 154 |
| abstract_inverted_index.in | 3 |
| abstract_inverted_index.is | 10, 140 |
| abstract_inverted_index.of | 116, 145, 150 |
| abstract_inverted_index.on | 103, 122, 172, 204 |
| abstract_inverted_index.to | 46, 55, 86, 126, 142, 163 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.The | 91, 207 |
| abstract_inverted_index.and | 60, 68, 100, 105, 178, 193, 196, 210 |
| abstract_inverted_index.are | 109, 118, 213 |
| abstract_inverted_index.for | 12, 200 |
| abstract_inverted_index.its | 88, 169, 198 |
| abstract_inverted_index.lay | 36 |
| abstract_inverted_index.one | 173 |
| abstract_inverted_index.our | 184 |
| abstract_inverted_index.the | 66, 83, 98, 161 |
| abstract_inverted_index.two | 179 |
| abstract_inverted_index.(FN) | 63 |
| abstract_inverted_index.(FP) | 59 |
| abstract_inverted_index.This | 158 |
| abstract_inverted_index.both | 65, 97 |
| abstract_inverted_index.cell | 1, 104, 176, 211 |
| abstract_inverted_index.from | 148 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.lack | 53 |
| abstract_inverted_index.more | 131 |
| abstract_inverted_index.such | 18 |
| abstract_inverted_index.that | 81 |
| abstract_inverted_index.they | 52 |
| abstract_inverted_index.this | 32, 72 |
| abstract_inverted_index.with | 111, 130 |
| abstract_inverted_index.agent | 80 |
| abstract_inverted_index.agree | 102 |
| abstract_inverted_index.areas | 115 |
| abstract_inverted_index.based | 121 |
| abstract_inverted_index.false | 57, 61 |
| abstract_inverted_index.guide | 87 |
| abstract_inverted_index.model | 162 |
| abstract_inverted_index.noise | 49 |
| abstract_inverted_index.noisy | 146, 166, 182, 205 |
| abstract_inverted_index.pixel | 69 |
| abstract_inverted_index.slide | 7 |
| abstract_inverted_index.their | 123, 156 |
| abstract_inverted_index.those | 149 |
| abstract_inverted_index.where | 96 |
| abstract_inverted_index.which | 108 |
| abstract_inverted_index.whole | 6 |
| abstract_inverted_index.(WSIs) | 9 |
| abstract_inverted_index.Matrix | 85, 93 |
| abstract_inverted_index.Recent | 28 |
| abstract_inverted_index.domain | 26 |
| abstract_inverted_index.errors | 195 |
| abstract_inverted_index.handle | 47 |
| abstract_inverted_index.images | 8 |
| abstract_inverted_index.method | 185 |
| abstract_inverted_index.models | 19, 203 |
| abstract_inverted_index.paper, | 73 |
| abstract_inverted_index.refine | 165 |
| abstract_inverted_index.robust | 202 |
| abstract_inverted_index.because | 51 |
| abstract_inverted_index.crucial | 11 |
| abstract_inverted_index.dataset | 177 |
| abstract_inverted_index.defines | 94 |
| abstract_inverted_index.efforts | 29 |
| abstract_inverted_index.enables | 160 |
| abstract_inverted_index.feature | 124 |
| abstract_inverted_index.greater | 135 |
| abstract_inverted_index.labels, | 167 |
| abstract_inverted_index.levels. | 70 |
| abstract_inverted_index.medical | 39 |
| abstract_inverted_index.process | 33 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.regions | 95, 133, 147, 153 |
| abstract_inverted_index.similar | 132 |
| abstract_inverted_index.various | 13 |
| abstract_inverted_index.without | 38 |
| abstract_inverted_index.However, | 16, 41 |
| abstract_inverted_index.clinical | 14 |
| abstract_inverted_index.employed | 141 |
| abstract_inverted_index.experts. | 27 |
| abstract_inverted_index.features | 144 |
| abstract_inverted_index.improved | 187 |
| abstract_inverted_index.learning | 89, 139 |
| abstract_inverted_index.mitigate | 56 |
| abstract_inverted_index.non-cell | 106 |
| abstract_inverted_index.official | 208 |
| abstract_inverted_index.paradigm | 159 |
| abstract_inverted_index.process. | 90 |
| abstract_inverted_index.publicly | 214 |
| abstract_inverted_index.regions, | 129 |
| abstract_inverted_index.reliable | 151 |
| abstract_inverted_index.requires | 21 |
| abstract_inverted_index.separate | 143 |
| abstract_inverted_index.stronger | 112 |
| abstract_inverted_index.struggle | 45 |
| abstract_inverted_index.training | 17, 201 |
| abstract_inverted_index.weighted | 120 |
| abstract_inverted_index.Consensus | 84, 92 |
| abstract_inverted_index.Validated | 171 |
| abstract_inverted_index.available | 215 |
| abstract_inverted_index.consensus | 128, 152 |
| abstract_inverted_index.datasets, | 183 |
| abstract_inverted_index.datasets. | 206 |
| abstract_inverted_index.enhancing | 168 |
| abstract_inverted_index.gigapixel | 5 |
| abstract_inverted_index.involving | 35 |
| abstract_inverted_index.leverages | 82 |
| abstract_inverted_index.negatives | 62 |
| abstract_inverted_index.positives | 58 |
| abstract_inverted_index.potential | 199 |
| abstract_inverted_index.receiving | 134 |
| abstract_inverted_index.simulated | 181 |
| abstract_inverted_index.typically | 20 |
| abstract_inverted_index.adaptively | 50, 119 |
| abstract_inverted_index.annotation | 48 |
| abstract_inverted_index.annotators | 37, 101 |
| abstract_inverted_index.approaches | 44 |
| abstract_inverted_index.attention. | 136 |
| abstract_inverted_index.correcting | 191 |
| abstract_inverted_index.expertise. | 40 |
| abstract_inverted_index.maximizing | 155 |
| abstract_inverted_index.mechanisms | 54 |
| abstract_inverted_index.pixel-wise | 23 |
| abstract_inverted_index.real-world | 174 |
| abstract_inverted_index.showcasing | 197 |
| abstract_inverted_index.similarity | 125 |
| abstract_inverted_index.Conversely, | 114 |
| abstract_inverted_index.Multi-class | 0 |
| abstract_inverted_index.annotations | 24, 212 |
| abstract_inverted_index.contrastive | 138 |
| abstract_inverted_index.effectively | 190 |
| abstract_inverted_index.iteratively | 164 |
| abstract_inverted_index.prioritized | 110 |
| abstract_inverted_index.robustness. | 170 |
| abstract_inverted_index.annotations, | 107 |
| abstract_inverted_index.conventional | 42 |
| abstract_inverted_index.democratized | 31 |
| abstract_inverted_index.demonstrates | 186 |
| abstract_inverted_index.disagreement | 117 |
| abstract_inverted_index.performance, | 189 |
| abstract_inverted_index.segmentation | 2, 188 |
| abstract_inverted_index.supervision. | 113 |
| abstract_inverted_index.Additionally, | 137 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.image-feature | 67 |
| abstract_inverted_index.lay-annotated | 175 |
| abstract_inverted_index.dissimilarity. | 157 |
| abstract_inverted_index.implementation | 209 |
| abstract_inverted_index.non-corrective | 43 |
| abstract_inverted_index.consensus-aware | 77 |
| abstract_inverted_index.high-confidence | 127 |
| abstract_inverted_index.high-resolution | 4 |
| abstract_inverted_index.self-corrective | 78 |
| abstract_inverted_index.labor-intensive, | 22 |
| abstract_inverted_index.reasoning-guided | 180 |
| abstract_inverted_index.https://github.com/ddrrnn123/CASC-AI. | 217 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 18 |
| citation_normalized_percentile |