Cascaded Graph Convolution Approach for Nuclei Detection in Histopathology Images Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.18178/joig.11.1.15-20
Nuclei detection in histopathology images of cancerous tissue stained with conventional hematoxylin and eosin stain is a challenging task due to the complexity and diversity of cell data. Deep learning techniques have produced encouraging results in the field of nuclei detection, where the main emphasis is on classification and regressionbased methods. Recent research has demonstrated that regression-based techniques outperform classification. In this paper, we propose a classification model based on graph convolutions to classify nuclei, and similar models to detect nuclei using cascaded architecture. With nearly 29,000 annotated nuclei in a large dataset of cancer histology images, we evaluated the Convolutional Neural Network (CNN) and Graph Convolutional Networks (GCN) based approaches. Our findings demonstrate that graph convolutions perform better with a cascaded GCN architecture and are more stable than centre-of-pixel approach. We have compared our twofold evaluation quantitative results with CNN-based models such as Spatial Constrained Convolutional Neural Network (SC-CNN) and Centre-of-Pixel Convolutional Neural Network (CP-CNN). We used two different loss functions, binary cross-entropy and focal loss function, and also investigated the behaviour of CP-CNN and GCN models to observe the effectiveness of CNN and GCN operators. The compared quantitative F1 score of cascaded-GCN shows an improvement of 6% compared to state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18178/joig.11.1.15-20
- OA Status
- hybrid
- Cited By
- 4
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4324081085
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4324081085Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18178/joig.11.1.15-20Digital Object Identifier
- Title
-
Cascaded Graph Convolution Approach for Nuclei Detection in Histopathology ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-01Full publication date if available
- Authors
-
Sachin S. Bahade, Michaël Edwards, Xianghua XieList of authors in order
- Landing page
-
https://doi.org/10.18178/joig.11.1.15-20Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.18178/joig.11.1.15-20Direct OA link when available
- Concepts
-
Convolutional neural network, Artificial intelligence, Pattern recognition (psychology), Computer science, Deep learning, Pixel, Graph, Convolution (computer science), Digital pathology, Artificial neural network, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4324081085 |
|---|---|
| doi | https://doi.org/10.18178/joig.11.1.15-20 |
| ids.doi | https://doi.org/10.18178/joig.11.1.15-20 |
| ids.openalex | https://openalex.org/W4324081085 |
| fwci | 1.02177155 |
| type | article |
| title | Cascaded Graph Convolution Approach for Nuclei Detection in Histopathology Images |
| biblio.issue | 1 |
| biblio.volume | 11 |
| biblio.last_page | 20 |
| biblio.first_page | 15 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12874 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9793999791145325 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Digital Imaging for Blood Diseases |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9789999723434448 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7755869030952454 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7032129764556885 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6882478594779968 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6687600612640381 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5992472171783447 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C160633673 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5608763694763184 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[5].display_name | Pixel |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.538203239440918 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C45347329 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5006000995635986 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[7].display_name | Convolution (computer science) |
| concepts[8].id | https://openalex.org/C2777522853 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4663737416267395 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5276128 |
| concepts[8].display_name | Digital pathology |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.2525455355644226 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11718705296516418 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7755869030952454 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7032129764556885 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.6882478594779968 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6687600612640381 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.5992472171783447 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/pixel |
| keywords[5].score | 0.5608763694763184 |
| keywords[5].display_name | Pixel |
| keywords[6].id | https://openalex.org/keywords/graph |
| keywords[6].score | 0.538203239440918 |
| keywords[6].display_name | Graph |
| keywords[7].id | https://openalex.org/keywords/convolution |
| keywords[7].score | 0.5006000995635986 |
| keywords[7].display_name | Convolution (computer science) |
| keywords[8].id | https://openalex.org/keywords/digital-pathology |
| keywords[8].score | 0.4663737416267395 |
| keywords[8].display_name | Digital pathology |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.2525455355644226 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.11718705296516418 |
| keywords[10].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.18178/joig.11.1.15-20 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210213203 |
| locations[0].source.issn | 2301-3699, 2972-3973 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2301-3699 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Image and Graphics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Image and Graphics |
| locations[0].landing_page_url | https://doi.org/10.18178/joig.11.1.15-20 |
| locations[1].id | pmh:oai:cronfa.swan.ac.uk:cronfa63059 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401612 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Cronfa (Swansea University) |
| locations[1].source.host_organization | https://openalex.org/I39586589 |
| locations[1].source.host_organization_name | Swansea University |
| locations[1].source.host_organization_lineage | https://openalex.org/I39586589 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://cronfa.swan.ac.uk/Record/cronfa63059 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5039490989 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sachin S. Bahade |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Swansea University, UK; |
| authorships[0].institutions[0].id | https://openalex.org/I39586589 |
| authorships[0].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Swansea University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sachin S. Bahade |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Swansea University, UK; |
| authorships[1].author.id | https://openalex.org/A5100652766 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0763-9555 |
| authorships[1].author.display_name | Michaël Edwards |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Swansea University, UK; |
| authorships[1].institutions[0].id | https://openalex.org/I39586589 |
| authorships[1].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Swansea University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael Edwards |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Swansea University, UK; |
| authorships[2].author.id | https://openalex.org/A5084010930 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2701-8660 |
| authorships[2].author.display_name | Xianghua Xie |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I39586589 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Swansea University, UK; |
| authorships[2].institutions[0].id | https://openalex.org/I39586589 |
| authorships[2].institutions[0].ror | https://ror.org/053fq8t95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I39586589 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Swansea University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xianghua Xie |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Swansea University, UK; |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.18178/joig.11.1.15-20 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cascaded Graph Convolution Approach for Nuclei Detection in Histopathology Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4321369474, https://openalex.org/W2731899572, https://openalex.org/W3133861977, https://openalex.org/W4200173597, https://openalex.org/W3116150086, https://openalex.org/W2999805992, https://openalex.org/W4291897433, https://openalex.org/W3011074480, https://openalex.org/W3192840557, https://openalex.org/W4312417841 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.18178/joig.11.1.15-20 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210213203 |
| best_oa_location.source.issn | 2301-3699, 2972-3973 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2301-3699 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Image and Graphics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Image and Graphics |
| best_oa_location.landing_page_url | https://doi.org/10.18178/joig.11.1.15-20 |
| primary_location.id | doi:10.18178/joig.11.1.15-20 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210213203 |
| primary_location.source.issn | 2301-3699, 2972-3973 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2301-3699 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Image and Graphics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Image and Graphics |
| primary_location.landing_page_url | https://doi.org/10.18178/joig.11.1.15-20 |
| publication_date | 2023-03-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4226464749, https://openalex.org/W1995460724, https://openalex.org/W4226237098, https://openalex.org/W2117395293, https://openalex.org/W2964321699, https://openalex.org/W3127455793, https://openalex.org/W2312404985, https://openalex.org/W1932469787, https://openalex.org/W2013811470, https://openalex.org/W2138763931, https://openalex.org/W2151608510, https://openalex.org/W1984984201, https://openalex.org/W2051055358, https://openalex.org/W2162548780, https://openalex.org/W3211328428, https://openalex.org/W2964121718, https://openalex.org/W2398921440, https://openalex.org/W2150461375, https://openalex.org/W1995073035 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 16, 65, 90, 120 |
| abstract_inverted_index.6% | 198 |
| abstract_inverted_index.F1 | 190 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.We | 131, 156 |
| abstract_inverted_index.an | 195 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.in | 2, 35, 89 |
| abstract_inverted_index.is | 15, 45 |
| abstract_inverted_index.of | 5, 25, 38, 93, 173, 182, 192, 197 |
| abstract_inverted_index.on | 46, 69 |
| abstract_inverted_index.to | 20, 72, 78, 178, 200 |
| abstract_inverted_index.we | 63, 97 |
| abstract_inverted_index.CNN | 183 |
| abstract_inverted_index.GCN | 122, 176, 185 |
| abstract_inverted_index.Our | 111 |
| abstract_inverted_index.The | 187 |
| abstract_inverted_index.and | 12, 23, 48, 75, 104, 124, 150, 164, 168, 175, 184 |
| abstract_inverted_index.are | 125 |
| abstract_inverted_index.due | 19 |
| abstract_inverted_index.has | 53 |
| abstract_inverted_index.our | 134 |
| abstract_inverted_index.the | 21, 36, 42, 99, 171, 180 |
| abstract_inverted_index.two | 158 |
| abstract_inverted_index.Deep | 28 |
| abstract_inverted_index.With | 84 |
| abstract_inverted_index.also | 169 |
| abstract_inverted_index.cell | 26 |
| abstract_inverted_index.have | 31, 132 |
| abstract_inverted_index.loss | 160, 166 |
| abstract_inverted_index.main | 43 |
| abstract_inverted_index.more | 126 |
| abstract_inverted_index.such | 142 |
| abstract_inverted_index.task | 18 |
| abstract_inverted_index.than | 128 |
| abstract_inverted_index.that | 55, 114 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.used | 157 |
| abstract_inverted_index.with | 9, 119, 139 |
| abstract_inverted_index.(CNN) | 103 |
| abstract_inverted_index.(GCN) | 108 |
| abstract_inverted_index.Graph | 105 |
| abstract_inverted_index.based | 68, 109 |
| abstract_inverted_index.data. | 27 |
| abstract_inverted_index.eosin | 13 |
| abstract_inverted_index.field | 37 |
| abstract_inverted_index.focal | 165 |
| abstract_inverted_index.graph | 70, 115 |
| abstract_inverted_index.large | 91 |
| abstract_inverted_index.model | 67 |
| abstract_inverted_index.score | 191 |
| abstract_inverted_index.shows | 194 |
| abstract_inverted_index.stain | 14 |
| abstract_inverted_index.using | 81 |
| abstract_inverted_index.where | 41 |
| abstract_inverted_index.29,000 | 86 |
| abstract_inverted_index.CP-CNN | 174 |
| abstract_inverted_index.Neural | 101, 147, 153 |
| abstract_inverted_index.Nuclei | 0 |
| abstract_inverted_index.Recent | 51 |
| abstract_inverted_index.better | 118 |
| abstract_inverted_index.binary | 162 |
| abstract_inverted_index.cancer | 94 |
| abstract_inverted_index.detect | 79 |
| abstract_inverted_index.images | 4 |
| abstract_inverted_index.models | 77, 141, 177 |
| abstract_inverted_index.nearly | 85 |
| abstract_inverted_index.nuclei | 39, 80, 88 |
| abstract_inverted_index.paper, | 62 |
| abstract_inverted_index.stable | 127 |
| abstract_inverted_index.tissue | 7 |
| abstract_inverted_index.Network | 102, 148, 154 |
| abstract_inverted_index.Spatial | 144 |
| abstract_inverted_index.dataset | 92 |
| abstract_inverted_index.images, | 96 |
| abstract_inverted_index.nuclei, | 74 |
| abstract_inverted_index.observe | 179 |
| abstract_inverted_index.perform | 117 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.results | 34, 138 |
| abstract_inverted_index.similar | 76 |
| abstract_inverted_index.stained | 8 |
| abstract_inverted_index.twofold | 135 |
| abstract_inverted_index.(SC-CNN) | 149 |
| abstract_inverted_index.Networks | 107 |
| abstract_inverted_index.cascaded | 82, 121 |
| abstract_inverted_index.classify | 73 |
| abstract_inverted_index.compared | 133, 188, 199 |
| abstract_inverted_index.emphasis | 44 |
| abstract_inverted_index.findings | 112 |
| abstract_inverted_index.learning | 29 |
| abstract_inverted_index.methods. | 50, 202 |
| abstract_inverted_index.produced | 32 |
| abstract_inverted_index.research | 52 |
| abstract_inverted_index.(CP-CNN). | 155 |
| abstract_inverted_index.CNN-based | 140 |
| abstract_inverted_index.annotated | 87 |
| abstract_inverted_index.approach. | 130 |
| abstract_inverted_index.behaviour | 172 |
| abstract_inverted_index.cancerous | 6 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.different | 159 |
| abstract_inverted_index.diversity | 24 |
| abstract_inverted_index.evaluated | 98 |
| abstract_inverted_index.function, | 167 |
| abstract_inverted_index.histology | 95 |
| abstract_inverted_index.complexity | 22 |
| abstract_inverted_index.detection, | 40 |
| abstract_inverted_index.evaluation | 136 |
| abstract_inverted_index.functions, | 161 |
| abstract_inverted_index.operators. | 186 |
| abstract_inverted_index.outperform | 58 |
| abstract_inverted_index.techniques | 30, 57 |
| abstract_inverted_index.Constrained | 145 |
| abstract_inverted_index.approaches. | 110 |
| abstract_inverted_index.challenging | 17 |
| abstract_inverted_index.demonstrate | 113 |
| abstract_inverted_index.encouraging | 33 |
| abstract_inverted_index.hematoxylin | 11 |
| abstract_inverted_index.improvement | 196 |
| abstract_inverted_index.architecture | 123 |
| abstract_inverted_index.cascaded-GCN | 193 |
| abstract_inverted_index.conventional | 10 |
| abstract_inverted_index.convolutions | 71, 116 |
| abstract_inverted_index.demonstrated | 54 |
| abstract_inverted_index.investigated | 170 |
| abstract_inverted_index.quantitative | 137, 189 |
| abstract_inverted_index.Convolutional | 100, 106, 146, 152 |
| abstract_inverted_index.architecture. | 83 |
| abstract_inverted_index.cross-entropy | 163 |
| abstract_inverted_index.effectiveness | 181 |
| abstract_inverted_index.classification | 47, 66 |
| abstract_inverted_index.histopathology | 3 |
| abstract_inverted_index.Centre-of-Pixel | 151 |
| abstract_inverted_index.centre-of-pixel | 129 |
| abstract_inverted_index.classification. | 59 |
| abstract_inverted_index.regressionbased | 49 |
| abstract_inverted_index.regression-based | 56 |
| abstract_inverted_index.state-of-the-art | 201 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.76521832 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |