Causal Data Integration Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.08741
Causal inference is fundamental to empirical scientific discoveries in natural and social sciences; however, in the process of conducting causal inference, data management problems can lead to false discoveries. Two such problems are (i) not having all attributes required for analysis, and (ii) misidentifying which attributes are to be included in the analysis. Analysts often only have access to partial data, and they critically rely on (often unavailable or incomplete) domain knowledge to identify attributes to include for analysis, which is often given in the form of a causal DAG. We argue that data management techniques can surmount both of these challenges. In this work, we introduce the Causal Data Integration (CDI) problem, in which unobserved attributes are mined from external sources and a corresponding causal DAG is automatically built. We identify key challenges and research opportunities in designing a CDI system, and present a system architecture for solving the CDI problem. Our preliminary experimental results demonstrate that solving CDI is achievable and pave the way for future research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.08741
- https://arxiv.org/pdf/2305.08741
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4376877001
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4376877001Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.08741Digital Object Identifier
- Title
-
Causal Data IntegrationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-15Full publication date if available
- Authors
-
Brit Youngmann, Michael Cafarella, Babak Salimi, Anna ZengList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.08741Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.08741Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.08741Direct OA link when available
- Concepts
-
Causal inference, Computer science, Causal model, Inference, Data science, Causal analysis, Key (lock), Process (computing), Domain (mathematical analysis), Causal reasoning, Management science, Risk analysis (engineering), Data mining, Artificial intelligence, Econometrics, Psychology, Mathematics, Engineering, Computer security, Statistics, Neuroscience, Medicine, Mathematical analysis, Operating system, CognitionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4376877001 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.08741 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.08741 |
| ids.openalex | https://openalex.org/W4376877001 |
| fwci | |
| type | preprint |
| title | Causal Data Integration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9886000156402588 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T12157 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9754999876022339 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Geochemistry and Geologic Mapping |
| topics[2].id | https://openalex.org/T11719 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9273999929428101 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158600405 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8607439398765564 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[0].display_name | Causal inference |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6902236938476562 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C11671645 |
| concepts[2].level | 2 |
| concepts[2].score | 0.638407826423645 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5054567 |
| concepts[2].display_name | Causal model |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6250043511390686 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6179884672164917 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C2987525970 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5830814242362976 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q96374569 |
| concepts[5].display_name | Causal analysis |
| concepts[6].id | https://openalex.org/C26517878 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5609923601150513 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[6].display_name | Key (lock) |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.554972231388092 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C36503486 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4938271939754486 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[8].display_name | Domain (mathematical analysis) |
| concepts[9].id | https://openalex.org/C115086926 |
| concepts[9].level | 3 |
| concepts[9].score | 0.447933554649353 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17004651 |
| concepts[9].display_name | Causal reasoning |
| concepts[10].id | https://openalex.org/C539667460 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3733973503112793 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2414942 |
| concepts[10].display_name | Management science |
| concepts[11].id | https://openalex.org/C112930515 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3385224938392639 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4389547 |
| concepts[11].display_name | Risk analysis (engineering) |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.33736681938171387 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.29530930519104004 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.20577818155288696 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.10543563961982727 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.10383200645446777 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.09855082631111145 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.08236300945281982 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C105795698 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[19].display_name | Statistics |
| concepts[20].id | https://openalex.org/C169760540 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[20].display_name | Neuroscience |
| concepts[21].id | https://openalex.org/C71924100 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[21].display_name | Medicine |
| concepts[22].id | https://openalex.org/C134306372 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[22].display_name | Mathematical analysis |
| concepts[23].id | https://openalex.org/C111919701 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[23].display_name | Operating system |
| concepts[24].id | https://openalex.org/C169900460 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[24].display_name | Cognition |
| keywords[0].id | https://openalex.org/keywords/causal-inference |
| keywords[0].score | 0.8607439398765564 |
| keywords[0].display_name | Causal inference |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6902236938476562 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/causal-model |
| keywords[2].score | 0.638407826423645 |
| keywords[2].display_name | Causal model |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.6250043511390686 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.6179884672164917 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/causal-analysis |
| keywords[5].score | 0.5830814242362976 |
| keywords[5].display_name | Causal analysis |
| keywords[6].id | https://openalex.org/keywords/key |
| keywords[6].score | 0.5609923601150513 |
| keywords[6].display_name | Key (lock) |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.554972231388092 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/domain |
| keywords[8].score | 0.4938271939754486 |
| keywords[8].display_name | Domain (mathematical analysis) |
| keywords[9].id | https://openalex.org/keywords/causal-reasoning |
| keywords[9].score | 0.447933554649353 |
| keywords[9].display_name | Causal reasoning |
| keywords[10].id | https://openalex.org/keywords/management-science |
| keywords[10].score | 0.3733973503112793 |
| keywords[10].display_name | Management science |
| keywords[11].id | https://openalex.org/keywords/risk-analysis |
| keywords[11].score | 0.3385224938392639 |
| keywords[11].display_name | Risk analysis (engineering) |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.33736681938171387 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.29530930519104004 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/econometrics |
| keywords[14].score | 0.20577818155288696 |
| keywords[14].display_name | Econometrics |
| keywords[15].id | https://openalex.org/keywords/psychology |
| keywords[15].score | 0.10543563961982727 |
| keywords[15].display_name | Psychology |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.10383200645446777 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.09855082631111145 |
| keywords[17].display_name | Engineering |
| keywords[18].id | https://openalex.org/keywords/computer-security |
| keywords[18].score | 0.08236300945281982 |
| keywords[18].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.08741 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.08741 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.08741 |
| locations[1].id | doi:10.48550/arxiv.2305.08741 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.08741 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026215174 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0031-5550 |
| authorships[0].author.display_name | Brit Youngmann |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Youngmann, Brit |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5039133265 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6122-0590 |
| authorships[1].author.display_name | Michael Cafarella |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cafarella, Michael |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103209063 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2485-9533 |
| authorships[2].author.display_name | Babak Salimi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Salimi, Babak |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091602664 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-7224-363X |
| authorships[3].author.display_name | Anna Zeng |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zeng, Anna |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.08741 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Causal Data Integration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9886000156402588 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W4313422683, https://openalex.org/W4385893294, https://openalex.org/W4361865420, https://openalex.org/W2161504683, https://openalex.org/W2011959240, https://openalex.org/W3184771105, https://openalex.org/W2574301230, https://openalex.org/W4386240783, https://openalex.org/W4385653229, https://openalex.org/W1600059215 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.08741 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.08741 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.08741 |
| primary_location.id | pmh:oai:arXiv.org:2305.08741 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.08741 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.08741 |
| publication_date | 2023-05-15 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 87, 123, 139, 144 |
| abstract_inverted_index.In | 102 |
| abstract_inverted_index.We | 90, 130 |
| abstract_inverted_index.be | 48 |
| abstract_inverted_index.in | 8, 14, 50, 83, 113, 137 |
| abstract_inverted_index.is | 2, 80, 127, 160 |
| abstract_inverted_index.of | 17, 86, 99 |
| abstract_inverted_index.on | 65 |
| abstract_inverted_index.or | 68 |
| abstract_inverted_index.to | 4, 26, 47, 58, 72, 75 |
| abstract_inverted_index.we | 105 |
| abstract_inverted_index.(i) | 33 |
| abstract_inverted_index.CDI | 140, 150, 159 |
| abstract_inverted_index.DAG | 126 |
| abstract_inverted_index.Our | 152 |
| abstract_inverted_index.Two | 29 |
| abstract_inverted_index.all | 36 |
| abstract_inverted_index.and | 10, 41, 61, 122, 134, 142, 162 |
| abstract_inverted_index.are | 32, 46, 117 |
| abstract_inverted_index.can | 24, 96 |
| abstract_inverted_index.for | 39, 77, 147, 166 |
| abstract_inverted_index.key | 132 |
| abstract_inverted_index.not | 34 |
| abstract_inverted_index.the | 15, 51, 84, 107, 149, 164 |
| abstract_inverted_index.way | 165 |
| abstract_inverted_index.(ii) | 42 |
| abstract_inverted_index.DAG. | 89 |
| abstract_inverted_index.Data | 109 |
| abstract_inverted_index.both | 98 |
| abstract_inverted_index.data | 21, 93 |
| abstract_inverted_index.form | 85 |
| abstract_inverted_index.from | 119 |
| abstract_inverted_index.have | 56 |
| abstract_inverted_index.lead | 25 |
| abstract_inverted_index.only | 55 |
| abstract_inverted_index.pave | 163 |
| abstract_inverted_index.rely | 64 |
| abstract_inverted_index.such | 30 |
| abstract_inverted_index.that | 92, 157 |
| abstract_inverted_index.they | 62 |
| abstract_inverted_index.this | 103 |
| abstract_inverted_index.(CDI) | 111 |
| abstract_inverted_index.argue | 91 |
| abstract_inverted_index.data, | 60 |
| abstract_inverted_index.false | 27 |
| abstract_inverted_index.given | 82 |
| abstract_inverted_index.mined | 118 |
| abstract_inverted_index.often | 54, 81 |
| abstract_inverted_index.these | 100 |
| abstract_inverted_index.which | 44, 79, 114 |
| abstract_inverted_index.work, | 104 |
| abstract_inverted_index.(often | 66 |
| abstract_inverted_index.Causal | 0, 108 |
| abstract_inverted_index.access | 57 |
| abstract_inverted_index.built. | 129 |
| abstract_inverted_index.causal | 19, 88, 125 |
| abstract_inverted_index.domain | 70 |
| abstract_inverted_index.future | 167 |
| abstract_inverted_index.having | 35 |
| abstract_inverted_index.social | 11 |
| abstract_inverted_index.system | 145 |
| abstract_inverted_index.include | 76 |
| abstract_inverted_index.natural | 9 |
| abstract_inverted_index.partial | 59 |
| abstract_inverted_index.present | 143 |
| abstract_inverted_index.process | 16 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.solving | 148, 158 |
| abstract_inverted_index.sources | 121 |
| abstract_inverted_index.system, | 141 |
| abstract_inverted_index.Analysts | 53 |
| abstract_inverted_index.external | 120 |
| abstract_inverted_index.however, | 13 |
| abstract_inverted_index.identify | 73, 131 |
| abstract_inverted_index.included | 49 |
| abstract_inverted_index.problem, | 112 |
| abstract_inverted_index.problem. | 151 |
| abstract_inverted_index.problems | 23, 31 |
| abstract_inverted_index.required | 38 |
| abstract_inverted_index.research | 135 |
| abstract_inverted_index.surmount | 97 |
| abstract_inverted_index.analysis, | 40, 78 |
| abstract_inverted_index.analysis. | 52 |
| abstract_inverted_index.designing | 138 |
| abstract_inverted_index.empirical | 5 |
| abstract_inverted_index.inference | 1 |
| abstract_inverted_index.introduce | 106 |
| abstract_inverted_index.knowledge | 71 |
| abstract_inverted_index.research. | 168 |
| abstract_inverted_index.sciences; | 12 |
| abstract_inverted_index.achievable | 161 |
| abstract_inverted_index.attributes | 37, 45, 74, 116 |
| abstract_inverted_index.challenges | 133 |
| abstract_inverted_index.conducting | 18 |
| abstract_inverted_index.critically | 63 |
| abstract_inverted_index.inference, | 20 |
| abstract_inverted_index.management | 22, 94 |
| abstract_inverted_index.scientific | 6 |
| abstract_inverted_index.techniques | 95 |
| abstract_inverted_index.unobserved | 115 |
| abstract_inverted_index.Integration | 110 |
| abstract_inverted_index.challenges. | 101 |
| abstract_inverted_index.demonstrate | 156 |
| abstract_inverted_index.discoveries | 7 |
| abstract_inverted_index.fundamental | 3 |
| abstract_inverted_index.incomplete) | 69 |
| abstract_inverted_index.preliminary | 153 |
| abstract_inverted_index.unavailable | 67 |
| abstract_inverted_index.architecture | 146 |
| abstract_inverted_index.discoveries. | 28 |
| abstract_inverted_index.experimental | 154 |
| abstract_inverted_index.automatically | 128 |
| abstract_inverted_index.corresponding | 124 |
| abstract_inverted_index.opportunities | 136 |
| abstract_inverted_index.misidentifying | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |