Causal Inference and Prefix Prompt Engineering Based on Text Generation Models for Financial Argument Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/electronics13091746
The field of argument analysis has become a crucial component in the advancement of natural language processing, which holds the potential to reveal unprecedented insights from complex data and enable more efficient, cost-effective solutions for enhancing human initiatives. Despite its importance, current technologies face significant challenges, including (1) low interpretability, (2) lack of precision and robustness, particularly in specialized fields like finance, and (3) the inability to deploy effectively on lightweight devices. To address these challenges, we introduce a framework uniquely designed to process and analyze massive volumes of argument data efficiently and accurately. This framework employs a text-to-text Transformer generation model as its backbone, utilizing multiple prompt engineering methods to fine-tune the model. These methods include Causal Inference from ChatGPT, which addresses the interpretability problem, and Prefix Instruction Fine-tuning as well as in-domain further pre-training, which tackle the issues of low robustness and accuracy. Ultimately, the proposed framework generates conditional outputs for specific tasks using different decoders, enabling deployment on consumer-grade devices. After conducting extensive experiments, our method achieves high accuracy, robustness, and interpretability across various tasks, including the highest F1 scores in the NTCIR-17 FinArg-1 tasks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics13091746
- OA Status
- gold
- Cited By
- 2
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396568874
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396568874Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics13091746Digital Object Identifier
- Title
-
Causal Inference and Prefix Prompt Engineering Based on Text Generation Models for Financial Argument AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-01Full publication date if available
- Authors
-
Fei Ding, Xin Kang, Linhuang Wang, Yunong Wu, Satoshi Nakagawa, Fuji RenList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics13091746Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/electronics13091746Direct OA link when available
- Concepts
-
Interpretability, Computer science, Robustness (evolution), Inference, Machine learning, Artificial intelligence, Causal inference, Data mining, Theoretical computer science, Data science, Biochemistry, Gene, Economics, Chemistry, EconometricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396568874 |
|---|---|
| doi | https://doi.org/10.3390/electronics13091746 |
| ids.doi | https://doi.org/10.3390/electronics13091746 |
| ids.openalex | https://openalex.org/W4396568874 |
| fwci | 1.2775571 |
| type | article |
| title | Causal Inference and Prefix Prompt Engineering Based on Text Generation Models for Financial Argument Analysis |
| biblio.issue | 9 |
| biblio.volume | 13 |
| biblio.last_page | 1746 |
| biblio.first_page | 1746 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11326 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Stock Market Forecasting Methods |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9249476194381714 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7636070251464844 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C63479239 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7438631057739258 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[2].display_name | Robustness (evolution) |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7048159241676331 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4779382050037384 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46308284997940063 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C158600405 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42886656522750854 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[6].display_name | Causal inference |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3733111619949341 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36117464303970337 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C2522767166 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35458672046661377 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[9].display_name | Data science |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.9249476194381714 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7636070251464844 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.7438631057739258 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.7048159241676331 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4779382050037384 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.46308284997940063 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/causal-inference |
| keywords[6].score | 0.42886656522750854 |
| keywords[6].display_name | Causal inference |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3733111619949341 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.36117464303970337 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/data-science |
| keywords[9].score | 0.35458672046661377 |
| keywords[9].display_name | Data science |
| language | en |
| locations[0].id | doi:10.3390/electronics13091746 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics13091746 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5089100714 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6715-8863 |
| authorships[0].author.display_name | Fei Ding |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I922474255 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I922474255 |
| authorships[0].institutions[0].ror | https://ror.org/044vy1d05 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I922474255 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Tokushima University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fei Ding |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan |
| authorships[1].author.id | https://openalex.org/A5031861539 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6024-3598 |
| authorships[1].author.display_name | Xin Kang |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I922474255 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I922474255 |
| authorships[1].institutions[0].ror | https://ror.org/044vy1d05 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I922474255 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Tokushima University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xin Kang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan |
| authorships[2].author.id | https://openalex.org/A5074335384 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-0068-1244 |
| authorships[2].author.display_name | Linhuang Wang |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I922474255 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I922474255 |
| authorships[2].institutions[0].ror | https://ror.org/044vy1d05 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I922474255 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Tokushima University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Linhuang Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan |
| authorships[3].author.id | https://openalex.org/A5073505008 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7079-3171 |
| authorships[3].author.display_name | Yunong Wu |
| authorships[3].affiliations[0].raw_affiliation_string | Dataa Robotics, Chengdu 610000, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yunong Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dataa Robotics, Chengdu 610000, China |
| authorships[4].author.id | https://openalex.org/A5045676644 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6293-0428 |
| authorships[4].author.display_name | Satoshi Nakagawa |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[4].affiliations[0].raw_affiliation_string | Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-0033, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I74801974 |
| authorships[4].institutions[0].ror | https://ror.org/057zh3y96 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I74801974 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | The University of Tokyo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Satoshi Nakagawa |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-0033, Japan |
| authorships[5].author.id | https://openalex.org/A5071943346 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4860-9184 |
| authorships[5].author.display_name | Fuji Ren |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[5].institutions[0].id | https://openalex.org/I150229711 |
| authorships[5].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Fuji Ren |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/electronics13091746 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Causal Inference and Prefix Prompt Engineering Based on Text Generation Models for Financial Argument Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W2809283485, https://openalex.org/W4293768783, https://openalex.org/W4288347394 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics13091746 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics13091746 |
| primary_location.id | doi:10.3390/electronics13091746 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics13091746 |
| publication_date | 2024-05-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3023384820, https://openalex.org/W2918821272, https://openalex.org/W3016693931, https://openalex.org/W4242601385, https://openalex.org/W3035669514, https://openalex.org/W4239510810, https://openalex.org/W6639619044, https://openalex.org/W2144499799, https://openalex.org/W2157331557, https://openalex.org/W4318069287, https://openalex.org/W2808610848, https://openalex.org/W4391583853, https://openalex.org/W4382998379, https://openalex.org/W2327805699, https://openalex.org/W2979666134, https://openalex.org/W6793656017, https://openalex.org/W4391074069, https://openalex.org/W4289840706, https://openalex.org/W4311978971, https://openalex.org/W4205812715, https://openalex.org/W3174245192, https://openalex.org/W4389352457, https://openalex.org/W4391760832, https://openalex.org/W4285137661, https://openalex.org/W6769627184, https://openalex.org/W3202729335, https://openalex.org/W3194005300, https://openalex.org/W3174432697, https://openalex.org/W6798057236, https://openalex.org/W3214556263, https://openalex.org/W6809646742, https://openalex.org/W2896457183, https://openalex.org/W4285294723, https://openalex.org/W4221143046, https://openalex.org/W4231510805, https://openalex.org/W4288089799, https://openalex.org/W3155407547, https://openalex.org/W3185341429 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 7, 78, 97 |
| abstract_inverted_index.F1 | 181 |
| abstract_inverted_index.To | 72 |
| abstract_inverted_index.as | 102, 130, 132 |
| abstract_inverted_index.in | 10, 57, 183 |
| abstract_inverted_index.of | 2, 13, 52, 88, 140 |
| abstract_inverted_index.on | 69, 160 |
| abstract_inverted_index.to | 21, 66, 82, 110 |
| abstract_inverted_index.we | 76 |
| abstract_inverted_index.(1) | 47 |
| abstract_inverted_index.(2) | 50 |
| abstract_inverted_index.(3) | 63 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 28, 54, 62, 84, 92, 126, 143, 173 |
| abstract_inverted_index.for | 34, 152 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.its | 39, 103 |
| abstract_inverted_index.low | 48, 141 |
| abstract_inverted_index.our | 167 |
| abstract_inverted_index.the | 11, 19, 64, 112, 123, 138, 146, 179, 184 |
| abstract_inverted_index.This | 94 |
| abstract_inverted_index.data | 27, 90 |
| abstract_inverted_index.face | 43 |
| abstract_inverted_index.from | 25, 119 |
| abstract_inverted_index.high | 170 |
| abstract_inverted_index.lack | 51 |
| abstract_inverted_index.like | 60 |
| abstract_inverted_index.more | 30 |
| abstract_inverted_index.well | 131 |
| abstract_inverted_index.After | 163 |
| abstract_inverted_index.These | 114 |
| abstract_inverted_index.field | 1 |
| abstract_inverted_index.holds | 18 |
| abstract_inverted_index.human | 36 |
| abstract_inverted_index.model | 101 |
| abstract_inverted_index.tasks | 154 |
| abstract_inverted_index.these | 74 |
| abstract_inverted_index.using | 155 |
| abstract_inverted_index.which | 17, 121, 136 |
| abstract_inverted_index.Causal | 117 |
| abstract_inverted_index.Prefix | 127 |
| abstract_inverted_index.across | 175 |
| abstract_inverted_index.become | 6 |
| abstract_inverted_index.deploy | 67 |
| abstract_inverted_index.enable | 29 |
| abstract_inverted_index.fields | 59 |
| abstract_inverted_index.issues | 139 |
| abstract_inverted_index.method | 168 |
| abstract_inverted_index.model. | 113 |
| abstract_inverted_index.prompt | 107 |
| abstract_inverted_index.reveal | 22 |
| abstract_inverted_index.scores | 182 |
| abstract_inverted_index.tackle | 137 |
| abstract_inverted_index.tasks, | 177 |
| abstract_inverted_index.tasks. | 187 |
| abstract_inverted_index.Despite | 38 |
| abstract_inverted_index.address | 73 |
| abstract_inverted_index.analyze | 85 |
| abstract_inverted_index.complex | 26 |
| abstract_inverted_index.crucial | 8 |
| abstract_inverted_index.current | 41 |
| abstract_inverted_index.employs | 96 |
| abstract_inverted_index.further | 134 |
| abstract_inverted_index.highest | 180 |
| abstract_inverted_index.include | 116 |
| abstract_inverted_index.massive | 86 |
| abstract_inverted_index.methods | 109, 115 |
| abstract_inverted_index.natural | 14 |
| abstract_inverted_index.outputs | 151 |
| abstract_inverted_index.process | 83 |
| abstract_inverted_index.various | 176 |
| abstract_inverted_index.volumes | 87 |
| abstract_inverted_index.ChatGPT, | 120 |
| abstract_inverted_index.FinArg-1 | 186 |
| abstract_inverted_index.NTCIR-17 | 185 |
| abstract_inverted_index.achieves | 169 |
| abstract_inverted_index.analysis | 4 |
| abstract_inverted_index.argument | 3, 89 |
| abstract_inverted_index.designed | 81 |
| abstract_inverted_index.devices. | 71, 162 |
| abstract_inverted_index.enabling | 158 |
| abstract_inverted_index.finance, | 61 |
| abstract_inverted_index.insights | 24 |
| abstract_inverted_index.language | 15 |
| abstract_inverted_index.multiple | 106 |
| abstract_inverted_index.problem, | 125 |
| abstract_inverted_index.proposed | 147 |
| abstract_inverted_index.specific | 153 |
| abstract_inverted_index.uniquely | 80 |
| abstract_inverted_index.Inference | 118 |
| abstract_inverted_index.accuracy, | 171 |
| abstract_inverted_index.accuracy. | 144 |
| abstract_inverted_index.addresses | 122 |
| abstract_inverted_index.backbone, | 104 |
| abstract_inverted_index.component | 9 |
| abstract_inverted_index.decoders, | 157 |
| abstract_inverted_index.different | 156 |
| abstract_inverted_index.enhancing | 35 |
| abstract_inverted_index.extensive | 165 |
| abstract_inverted_index.fine-tune | 111 |
| abstract_inverted_index.framework | 79, 95, 148 |
| abstract_inverted_index.generates | 149 |
| abstract_inverted_index.in-domain | 133 |
| abstract_inverted_index.inability | 65 |
| abstract_inverted_index.including | 46, 178 |
| abstract_inverted_index.introduce | 77 |
| abstract_inverted_index.potential | 20 |
| abstract_inverted_index.precision | 53 |
| abstract_inverted_index.solutions | 33 |
| abstract_inverted_index.utilizing | 105 |
| abstract_inverted_index.conducting | 164 |
| abstract_inverted_index.deployment | 159 |
| abstract_inverted_index.efficient, | 31 |
| abstract_inverted_index.generation | 100 |
| abstract_inverted_index.robustness | 142 |
| abstract_inverted_index.Fine-tuning | 129 |
| abstract_inverted_index.Instruction | 128 |
| abstract_inverted_index.Transformer | 99 |
| abstract_inverted_index.Ultimately, | 145 |
| abstract_inverted_index.accurately. | 93 |
| abstract_inverted_index.advancement | 12 |
| abstract_inverted_index.challenges, | 45, 75 |
| abstract_inverted_index.conditional | 150 |
| abstract_inverted_index.effectively | 68 |
| abstract_inverted_index.efficiently | 91 |
| abstract_inverted_index.engineering | 108 |
| abstract_inverted_index.importance, | 40 |
| abstract_inverted_index.lightweight | 70 |
| abstract_inverted_index.processing, | 16 |
| abstract_inverted_index.robustness, | 55, 172 |
| abstract_inverted_index.significant | 44 |
| abstract_inverted_index.specialized | 58 |
| abstract_inverted_index.experiments, | 166 |
| abstract_inverted_index.initiatives. | 37 |
| abstract_inverted_index.particularly | 56 |
| abstract_inverted_index.technologies | 42 |
| abstract_inverted_index.text-to-text | 98 |
| abstract_inverted_index.pre-training, | 135 |
| abstract_inverted_index.unprecedented | 23 |
| abstract_inverted_index.consumer-grade | 161 |
| abstract_inverted_index.cost-effective | 32 |
| abstract_inverted_index.interpretability | 124, 174 |
| abstract_inverted_index.interpretability, | 49 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.77587733 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |