Causal Inference, Biomarker Discovery, Graph Neural Network, Feature Selection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.13295
Biomarker discovery from high-throughput transcriptomic data is crucial for advancing precision medicine. However, existing methods often neglect gene-gene regulatory relationships and lack stability across datasets, leading to conflation of spurious correlations with genuine causal effects. To address these issues, we develop a causal graph neural network (Causal-GNN) method that integrates causal inference with multi-layer graph neural networks (GNNs). The key innovation is the incorporation of causal effect estimation for identifying stable biomarkers, coupled with a GNN-based propensity scoring mechanism that leverages cross-gene regulatory networks. Experimental results demonstrate that our method achieves consistently high predictive accuracy across four distinct datasets and four independent classifiers. Moreover, it enables the identification of more stable biomarkers compared to traditional methods. Our work provides a robust, efficient, and biologically interpretable tool for biomarker discovery, demonstrating strong potential for broad application across medical disciplines.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.13295
- https://arxiv.org/pdf/2511.13295
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416361849
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416361849Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.13295Digital Object Identifier
- Title
-
Causal Inference, Biomarker Discovery, Graph Neural Network, Feature SelectionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-17Full publication date if available
- Authors
-
Jiansong Wu, Yulong Yuan, Huangyi KangList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.13295Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.13295Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.13295Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416361849 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.13295 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.13295 |
| ids.openalex | https://openalex.org/W4416361849 |
| fwci | |
| type | preprint |
| title | Causal Inference, Biomarker Discovery, Graph Neural Network, Feature Selection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.13295 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.13295 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.13295 |
| locations[1].id | doi:10.48550/arxiv.2511.13295 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.13295 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5070800977 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9648-6479 |
| authorships[0].author.display_name | Jiansong Wu |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Wu, Jingxin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009414991 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yulong Yuan |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yuan, Yulong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102538332 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Huangyi Kang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kang, Huangyi |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.13295 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | Causal Inference, Biomarker Discovery, Graph Neural Network, Feature Selection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:08:26.507040 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.13295 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.13295 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.13295 |
| primary_location.id | pmh:oai:arXiv.org:2511.13295 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.13295 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.13295 |
| publication_date | 2025-11-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41, 74, 119 |
| abstract_inverted_index.To | 35 |
| abstract_inverted_index.is | 6, 61 |
| abstract_inverted_index.it | 104 |
| abstract_inverted_index.of | 28, 64, 108 |
| abstract_inverted_index.to | 26, 113 |
| abstract_inverted_index.we | 39 |
| abstract_inverted_index.Our | 116 |
| abstract_inverted_index.The | 58 |
| abstract_inverted_index.and | 20, 99, 122 |
| abstract_inverted_index.for | 8, 68, 126, 132 |
| abstract_inverted_index.key | 59 |
| abstract_inverted_index.our | 88 |
| abstract_inverted_index.the | 62, 106 |
| abstract_inverted_index.data | 5 |
| abstract_inverted_index.four | 96, 100 |
| abstract_inverted_index.from | 2 |
| abstract_inverted_index.high | 92 |
| abstract_inverted_index.lack | 21 |
| abstract_inverted_index.more | 109 |
| abstract_inverted_index.that | 48, 79, 87 |
| abstract_inverted_index.tool | 125 |
| abstract_inverted_index.with | 31, 52, 73 |
| abstract_inverted_index.work | 117 |
| abstract_inverted_index.broad | 133 |
| abstract_inverted_index.graph | 43, 54 |
| abstract_inverted_index.often | 15 |
| abstract_inverted_index.these | 37 |
| abstract_inverted_index.across | 23, 95, 135 |
| abstract_inverted_index.causal | 33, 42, 50, 65 |
| abstract_inverted_index.effect | 66 |
| abstract_inverted_index.method | 47, 89 |
| abstract_inverted_index.neural | 44, 55 |
| abstract_inverted_index.stable | 70, 110 |
| abstract_inverted_index.strong | 130 |
| abstract_inverted_index.(GNNs). | 57 |
| abstract_inverted_index.address | 36 |
| abstract_inverted_index.coupled | 72 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.develop | 40 |
| abstract_inverted_index.enables | 105 |
| abstract_inverted_index.genuine | 32 |
| abstract_inverted_index.issues, | 38 |
| abstract_inverted_index.leading | 25 |
| abstract_inverted_index.medical | 136 |
| abstract_inverted_index.methods | 14 |
| abstract_inverted_index.neglect | 16 |
| abstract_inverted_index.network | 45 |
| abstract_inverted_index.results | 85 |
| abstract_inverted_index.robust, | 120 |
| abstract_inverted_index.scoring | 77 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.accuracy | 94 |
| abstract_inverted_index.achieves | 90 |
| abstract_inverted_index.compared | 112 |
| abstract_inverted_index.datasets | 98 |
| abstract_inverted_index.distinct | 97 |
| abstract_inverted_index.effects. | 34 |
| abstract_inverted_index.existing | 13 |
| abstract_inverted_index.methods. | 115 |
| abstract_inverted_index.networks | 56 |
| abstract_inverted_index.provides | 118 |
| abstract_inverted_index.spurious | 29 |
| abstract_inverted_index.Biomarker | 0 |
| abstract_inverted_index.GNN-based | 75 |
| abstract_inverted_index.Moreover, | 103 |
| abstract_inverted_index.advancing | 9 |
| abstract_inverted_index.biomarker | 127 |
| abstract_inverted_index.datasets, | 24 |
| abstract_inverted_index.discovery | 1 |
| abstract_inverted_index.gene-gene | 17 |
| abstract_inverted_index.inference | 51 |
| abstract_inverted_index.leverages | 80 |
| abstract_inverted_index.mechanism | 78 |
| abstract_inverted_index.medicine. | 11 |
| abstract_inverted_index.networks. | 83 |
| abstract_inverted_index.potential | 131 |
| abstract_inverted_index.precision | 10 |
| abstract_inverted_index.stability | 22 |
| abstract_inverted_index.biomarkers | 111 |
| abstract_inverted_index.conflation | 27 |
| abstract_inverted_index.cross-gene | 81 |
| abstract_inverted_index.discovery, | 128 |
| abstract_inverted_index.efficient, | 121 |
| abstract_inverted_index.estimation | 67 |
| abstract_inverted_index.innovation | 60 |
| abstract_inverted_index.integrates | 49 |
| abstract_inverted_index.predictive | 93 |
| abstract_inverted_index.propensity | 76 |
| abstract_inverted_index.regulatory | 18, 82 |
| abstract_inverted_index.application | 134 |
| abstract_inverted_index.biomarkers, | 71 |
| abstract_inverted_index.demonstrate | 86 |
| abstract_inverted_index.identifying | 69 |
| abstract_inverted_index.independent | 101 |
| abstract_inverted_index.multi-layer | 53 |
| abstract_inverted_index.traditional | 114 |
| abstract_inverted_index.(Causal-GNN) | 46 |
| abstract_inverted_index.Experimental | 84 |
| abstract_inverted_index.biologically | 123 |
| abstract_inverted_index.classifiers. | 102 |
| abstract_inverted_index.consistently | 91 |
| abstract_inverted_index.correlations | 30 |
| abstract_inverted_index.disciplines. | 137 |
| abstract_inverted_index.demonstrating | 129 |
| abstract_inverted_index.incorporation | 63 |
| abstract_inverted_index.interpretable | 124 |
| abstract_inverted_index.relationships | 19 |
| abstract_inverted_index.identification | 107 |
| abstract_inverted_index.transcriptomic | 4 |
| abstract_inverted_index.high-throughput | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |