Causal Inference from Small High-dimensional Datasets Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2205.09281
Many methods have been proposed to estimate treatment effects with observational data. Often, the choice of the method considers the application's characteristics, such as type of treatment and outcome, confounding effect, and the complexity of the data. These methods implicitly assume that the sample size is large enough to train such models, especially the neural network-based estimators. What if this is not the case? In this work, we propose Causal-Batle, a methodology to estimate treatment effects in small high-dimensional datasets in the presence of another high-dimensional dataset in the same feature space. We adopt an approach that brings transfer learning techniques into causal inference. Our experiments show that such an approach helps to bring stability to neural network-based methods and improve the treatment effect estimates in small high-dimensional datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2205.09281
- https://arxiv.org/pdf/2205.09281
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281260389
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281260389Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2205.09281Digital Object Identifier
- Title
-
Causal Inference from Small High-dimensional DatasetsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-19Full publication date if available
- Authors
-
Raquel Aoki, Martin EsterList of authors in order
- Landing page
-
https://arxiv.org/abs/2205.09281Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2205.09281Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.09281Direct OA link when available
- Concepts
-
Causal inference, Inference, Estimator, Computer science, Observational study, Machine learning, Artificial intelligence, Feature (linguistics), Sample size determination, Artificial neural network, Stability (learning theory), Confounding, Lasso (programming language), Outcome (game theory), Data mining, Econometrics, Statistics, Mathematics, Philosophy, Linguistics, World Wide Web, Mathematical economicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281260389 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2205.09281 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.09281 |
| ids.openalex | https://openalex.org/W4281260389 |
| fwci | |
| type | preprint |
| title | Causal Inference from Small High-dimensional Datasets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9768999814987183 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9503999948501587 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T12026 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9272000193595886 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Explainable Artificial Intelligence (XAI) |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158600405 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8338552713394165 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[0].display_name | Causal inference |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6978524923324585 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6662459373474121 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6533526182174683 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C23131810 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5729950666427612 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[4].display_name | Observational study |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5728291869163513 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5453037023544312 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5281854867935181 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C129848803 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5097214579582214 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[8].display_name | Sample size determination |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4979729652404785 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C112972136 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4799002408981323 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[10].display_name | Stability (learning theory) |
| concepts[11].id | https://openalex.org/C77350462 |
| concepts[11].level | 2 |
| concepts[11].score | 0.46111300587654114 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1125472 |
| concepts[11].display_name | Confounding |
| concepts[12].id | https://openalex.org/C37616216 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4318715035915375 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[12].display_name | Lasso (programming language) |
| concepts[13].id | https://openalex.org/C148220186 |
| concepts[13].level | 2 |
| concepts[13].score | 0.41784924268722534 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7111912 |
| concepts[13].display_name | Outcome (game theory) |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.37980377674102783 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C149782125 |
| concepts[15].level | 1 |
| concepts[15].score | 0.28054380416870117 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[15].display_name | Econometrics |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.22780823707580566 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.20195692777633667 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| concepts[20].id | https://openalex.org/C136764020 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[20].display_name | World Wide Web |
| concepts[21].id | https://openalex.org/C144237770 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[21].display_name | Mathematical economics |
| keywords[0].id | https://openalex.org/keywords/causal-inference |
| keywords[0].score | 0.8338552713394165 |
| keywords[0].display_name | Causal inference |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6978524923324585 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.6662459373474121 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6533526182174683 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/observational-study |
| keywords[4].score | 0.5729950666427612 |
| keywords[4].display_name | Observational study |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5728291869163513 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5453037023544312 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5281854867935181 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/sample-size-determination |
| keywords[8].score | 0.5097214579582214 |
| keywords[8].display_name | Sample size determination |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.4979729652404785 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/stability |
| keywords[10].score | 0.4799002408981323 |
| keywords[10].display_name | Stability (learning theory) |
| keywords[11].id | https://openalex.org/keywords/confounding |
| keywords[11].score | 0.46111300587654114 |
| keywords[11].display_name | Confounding |
| keywords[12].id | https://openalex.org/keywords/lasso |
| keywords[12].score | 0.4318715035915375 |
| keywords[12].display_name | Lasso (programming language) |
| keywords[13].id | https://openalex.org/keywords/outcome |
| keywords[13].score | 0.41784924268722534 |
| keywords[13].display_name | Outcome (game theory) |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.37980377674102783 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/econometrics |
| keywords[15].score | 0.28054380416870117 |
| keywords[15].display_name | Econometrics |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.22780823707580566 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.20195692777633667 |
| keywords[17].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2205.09281 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2205.09281 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2205.09281 |
| locations[1].id | doi:10.48550/arxiv.2205.09281 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2205.09281 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058693664 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0788-1368 |
| authorships[0].author.display_name | Raquel Aoki |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aoki, Raquel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018267399 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7732-2815 |
| authorships[1].author.display_name | Martin Ester |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ester, Martin |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.09281 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Causal Inference from Small High-dimensional Datasets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9768999814987183 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W3023719900, https://openalex.org/W4287798354, https://openalex.org/W3035083705, https://openalex.org/W2157524492, https://openalex.org/W2030287811, https://openalex.org/W4386534229, https://openalex.org/W2159706976, https://openalex.org/W3002087755, https://openalex.org/W4386150491, https://openalex.org/W3080342542 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.09281 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.09281 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.09281 |
| primary_location.id | pmh:oai:arXiv.org:2205.09281 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2205.09281 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2205.09281 |
| publication_date | 2022-05-19 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 70 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.We | 92 |
| abstract_inverted_index.an | 94, 109 |
| abstract_inverted_index.as | 23 |
| abstract_inverted_index.if | 58 |
| abstract_inverted_index.in | 76, 80, 87, 125 |
| abstract_inverted_index.is | 45, 60 |
| abstract_inverted_index.of | 15, 25, 34, 83 |
| abstract_inverted_index.to | 5, 48, 72, 112, 115 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.Our | 104 |
| abstract_inverted_index.and | 27, 31, 119 |
| abstract_inverted_index.not | 61 |
| abstract_inverted_index.the | 13, 16, 19, 32, 35, 42, 53, 62, 81, 88, 121 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.What | 57 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.same | 89 |
| abstract_inverted_index.show | 106 |
| abstract_inverted_index.size | 44 |
| abstract_inverted_index.such | 22, 50, 108 |
| abstract_inverted_index.that | 41, 96, 107 |
| abstract_inverted_index.this | 59, 65 |
| abstract_inverted_index.type | 24 |
| abstract_inverted_index.with | 9 |
| abstract_inverted_index.These | 37 |
| abstract_inverted_index.adopt | 93 |
| abstract_inverted_index.bring | 113 |
| abstract_inverted_index.case? | 63 |
| abstract_inverted_index.data. | 11, 36 |
| abstract_inverted_index.helps | 111 |
| abstract_inverted_index.large | 46 |
| abstract_inverted_index.small | 77, 126 |
| abstract_inverted_index.train | 49 |
| abstract_inverted_index.work, | 66 |
| abstract_inverted_index.Often, | 12 |
| abstract_inverted_index.assume | 40 |
| abstract_inverted_index.brings | 97 |
| abstract_inverted_index.causal | 102 |
| abstract_inverted_index.choice | 14 |
| abstract_inverted_index.effect | 123 |
| abstract_inverted_index.enough | 47 |
| abstract_inverted_index.method | 17 |
| abstract_inverted_index.neural | 54, 116 |
| abstract_inverted_index.sample | 43 |
| abstract_inverted_index.space. | 91 |
| abstract_inverted_index.another | 84 |
| abstract_inverted_index.dataset | 86 |
| abstract_inverted_index.effect, | 30 |
| abstract_inverted_index.effects | 8, 75 |
| abstract_inverted_index.feature | 90 |
| abstract_inverted_index.improve | 120 |
| abstract_inverted_index.methods | 1, 38, 118 |
| abstract_inverted_index.models, | 51 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.approach | 95, 110 |
| abstract_inverted_index.datasets | 79 |
| abstract_inverted_index.estimate | 6, 73 |
| abstract_inverted_index.learning | 99 |
| abstract_inverted_index.outcome, | 28 |
| abstract_inverted_index.presence | 82 |
| abstract_inverted_index.proposed | 4 |
| abstract_inverted_index.transfer | 98 |
| abstract_inverted_index.considers | 18 |
| abstract_inverted_index.datasets. | 128 |
| abstract_inverted_index.estimates | 124 |
| abstract_inverted_index.stability | 114 |
| abstract_inverted_index.treatment | 7, 26, 74, 122 |
| abstract_inverted_index.complexity | 33 |
| abstract_inverted_index.especially | 52 |
| abstract_inverted_index.implicitly | 39 |
| abstract_inverted_index.inference. | 103 |
| abstract_inverted_index.techniques | 100 |
| abstract_inverted_index.confounding | 29 |
| abstract_inverted_index.estimators. | 56 |
| abstract_inverted_index.experiments | 105 |
| abstract_inverted_index.methodology | 71 |
| abstract_inverted_index.Causal-Batle, | 69 |
| abstract_inverted_index.application's | 20 |
| abstract_inverted_index.network-based | 55, 117 |
| abstract_inverted_index.observational | 10 |
| abstract_inverted_index.characteristics, | 21 |
| abstract_inverted_index.high-dimensional | 78, 85, 127 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |