Causal Inference in Observational Data Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1611.04660
Our aging population increasingly suffers from multiple chronic diseases simultaneously, necessitating the comprehensive treatment of these conditions. Finding the optimal set of drugs for a combinatorial set of diseases is a combinatorial pattern exploration problem. Association rule mining is a popular tool for such problems, but the requirement of health care for finding causal, rather than associative, patterns renders association rule mining unsuitable. To address this issue, we propose a novel framework based on the Rubin-Neyman causal model for extracting causal rules from observational data, correcting for a number of common biases. Specifically, given a set of interventions and a set of items that define subpopulations (e.g., diseases), we wish to find all subpopulations in which effective intervention combinations exist and in each such subpopulation, we wish to find all intervention combinations such that dropping any intervention from this combination will reduce the efficacy of the treatment. A key aspect of our framework is the concept of closed intervention sets which extend the concept of quantifying the effect of a single intervention to a set of concurrent interventions. We also evaluated our causal rule mining framework on the Electronic Health Records (EHR) data of a large cohort of patients from Mayo Clinic and showed that the patterns we extracted are sufficiently rich to explain the controversial findings in the medical literature regarding the effect of a class of cholesterol drugs on Type-II Diabetes Mellitus (T2DM).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1611.04660
- https://arxiv.org/pdf/1611.04660
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4298272844
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4298272844Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1611.04660Digital Object Identifier
- Title
-
Causal Inference in Observational DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-11-15Full publication date if available
- Authors
-
Pranjul Yadav, Lisiane Prunelli, Alexander Hoff, Michael Steinbach, Bonnie L. Westra, Vipin Kumar, György SimonList of authors in order
- Landing page
-
https://arxiv.org/abs/1611.04660Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1611.04660Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1611.04660Direct OA link when available
- Concepts
-
Causal inference, Observational study, Intervention (counseling), Set (abstract data type), Psychological intervention, Association rule learning, Medicine, Computer science, Inference, Population, Machine learning, Artificial intelligence, Data mining, Data science, Psychiatry, Environmental health, Programming language, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4298272844 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1611.04660 |
| ids.doi | https://doi.org/10.48550/arxiv.1611.04660 |
| ids.openalex | https://openalex.org/W4298272844 |
| fwci | |
| type | preprint |
| title | Causal Inference in Observational Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8429999947547913 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11710 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.8083999752998352 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Biomedical Text Mining and Ontologies |
| topics[2].id | https://openalex.org/T10394 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.7943999767303467 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Lipoproteins and Cardiovascular Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158600405 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7690222859382629 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[0].display_name | Causal inference |
| concepts[1].id | https://openalex.org/C23131810 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7113178968429565 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[1].display_name | Observational study |
| concepts[2].id | https://openalex.org/C2780665704 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6235848665237427 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q959298 |
| concepts[2].display_name | Intervention (counseling) |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6059568524360657 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C27415008 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5679342746734619 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7256382 |
| concepts[4].display_name | Psychological intervention |
| concepts[5].id | https://openalex.org/C193524817 |
| concepts[5].level | 2 |
| concepts[5].score | 0.547336220741272 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q386780 |
| concepts[5].display_name | Association rule learning |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5085693597793579 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5074290633201599 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C2776214188 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4905830919742584 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[8].display_name | Inference |
| concepts[9].id | https://openalex.org/C2908647359 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47446614503860474 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[9].display_name | Population |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.42485377192497253 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3751699924468994 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3735213875770569 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C2522767166 |
| concepts[13].level | 1 |
| concepts[13].score | 0.331243097782135 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[13].display_name | Data science |
| concepts[14].id | https://openalex.org/C118552586 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11324870586395264 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[14].display_name | Psychiatry |
| concepts[15].id | https://openalex.org/C99454951 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[15].display_name | Environmental health |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C142724271 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[17].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/causal-inference |
| keywords[0].score | 0.7690222859382629 |
| keywords[0].display_name | Causal inference |
| keywords[1].id | https://openalex.org/keywords/observational-study |
| keywords[1].score | 0.7113178968429565 |
| keywords[1].display_name | Observational study |
| keywords[2].id | https://openalex.org/keywords/intervention |
| keywords[2].score | 0.6235848665237427 |
| keywords[2].display_name | Intervention (counseling) |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.6059568524360657 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/psychological-intervention |
| keywords[4].score | 0.5679342746734619 |
| keywords[4].display_name | Psychological intervention |
| keywords[5].id | https://openalex.org/keywords/association-rule-learning |
| keywords[5].score | 0.547336220741272 |
| keywords[5].display_name | Association rule learning |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.5085693597793579 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.5074290633201599 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/inference |
| keywords[8].score | 0.4905830919742584 |
| keywords[8].display_name | Inference |
| keywords[9].id | https://openalex.org/keywords/population |
| keywords[9].score | 0.47446614503860474 |
| keywords[9].display_name | Population |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.42485377192497253 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3751699924468994 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3735213875770569 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/data-science |
| keywords[13].score | 0.331243097782135 |
| keywords[13].display_name | Data science |
| keywords[14].id | https://openalex.org/keywords/psychiatry |
| keywords[14].score | 0.11324870586395264 |
| keywords[14].display_name | Psychiatry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1611.04660 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1611.04660 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1611.04660 |
| locations[1].id | doi:10.48550/arxiv.1611.04660 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1611.04660 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003976436 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7860-5830 |
| authorships[0].author.display_name | Pranjul Yadav |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yadav, Pranjul |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5046038472 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lisiane Prunelli |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Prunelli, Lisiane |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5082618206 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Alexander Hoff |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hoff, Alexander |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089436894 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7309-6395 |
| authorships[3].author.display_name | Michael Steinbach |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Steinbach, Michael |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5106083949 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Bonnie L. Westra |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Westra, Bonnie |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100645812 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9040-2665 |
| authorships[5].author.display_name | Vipin Kumar |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kumar, Vipin |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5050008389 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4715-5934 |
| authorships[6].author.display_name | György Simon |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Simon, Gyorgy |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1611.04660 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Causal Inference in Observational Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8429999947547913 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2979832559, https://openalex.org/W3128129045, https://openalex.org/W4385077270, https://openalex.org/W4387531643, https://openalex.org/W4324300609, https://openalex.org/W4231150422, https://openalex.org/W2969540655, https://openalex.org/W3164869265, https://openalex.org/W2997970376, https://openalex.org/W4248255116 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1611.04660 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1611.04660 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1611.04660 |
| primary_location.id | pmh:oai:arXiv.org:1611.04660 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1611.04660 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1611.04660 |
| publication_date | 2016-11-15 |
| publication_year | 2016 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 147 |
| abstract_inverted_index.a | 24, 30, 39, 69, 87, 94, 99, 169, 173, 194, 225 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.We | 178 |
| abstract_inverted_index.in | 114, 121, 217 |
| abstract_inverted_index.is | 29, 38, 153 |
| abstract_inverted_index.of | 14, 21, 27, 48, 89, 96, 101, 144, 150, 156, 164, 168, 175, 193, 197, 224, 227 |
| abstract_inverted_index.on | 73, 186, 230 |
| abstract_inverted_index.to | 110, 127, 172, 212 |
| abstract_inverted_index.we | 67, 108, 125, 207 |
| abstract_inverted_index.Our | 0 |
| abstract_inverted_index.all | 112, 129 |
| abstract_inverted_index.and | 98, 120, 202 |
| abstract_inverted_index.any | 135 |
| abstract_inverted_index.are | 209 |
| abstract_inverted_index.but | 45 |
| abstract_inverted_index.for | 23, 42, 51, 78, 86 |
| abstract_inverted_index.key | 148 |
| abstract_inverted_index.our | 151, 181 |
| abstract_inverted_index.set | 20, 26, 95, 100, 174 |
| abstract_inverted_index.the | 11, 18, 46, 74, 142, 145, 154, 162, 166, 187, 205, 214, 218, 222 |
| abstract_inverted_index.Mayo | 200 |
| abstract_inverted_index.also | 179 |
| abstract_inverted_index.care | 50 |
| abstract_inverted_index.data | 192 |
| abstract_inverted_index.each | 122 |
| abstract_inverted_index.find | 111, 128 |
| abstract_inverted_index.from | 5, 82, 137, 199 |
| abstract_inverted_index.rich | 211 |
| abstract_inverted_index.rule | 36, 60, 183 |
| abstract_inverted_index.sets | 159 |
| abstract_inverted_index.such | 43, 123, 132 |
| abstract_inverted_index.than | 55 |
| abstract_inverted_index.that | 103, 133, 204 |
| abstract_inverted_index.this | 65, 138 |
| abstract_inverted_index.tool | 41 |
| abstract_inverted_index.will | 140 |
| abstract_inverted_index.wish | 109, 126 |
| abstract_inverted_index.(EHR) | 191 |
| abstract_inverted_index.aging | 1 |
| abstract_inverted_index.based | 72 |
| abstract_inverted_index.class | 226 |
| abstract_inverted_index.data, | 84 |
| abstract_inverted_index.drugs | 22, 229 |
| abstract_inverted_index.exist | 119 |
| abstract_inverted_index.given | 93 |
| abstract_inverted_index.items | 102 |
| abstract_inverted_index.large | 195 |
| abstract_inverted_index.model | 77 |
| abstract_inverted_index.novel | 70 |
| abstract_inverted_index.rules | 81 |
| abstract_inverted_index.these | 15 |
| abstract_inverted_index.which | 115, 160 |
| abstract_inverted_index.(e.g., | 106 |
| abstract_inverted_index.Clinic | 201 |
| abstract_inverted_index.Health | 189 |
| abstract_inverted_index.aspect | 149 |
| abstract_inverted_index.causal | 76, 80, 182 |
| abstract_inverted_index.closed | 157 |
| abstract_inverted_index.cohort | 196 |
| abstract_inverted_index.common | 90 |
| abstract_inverted_index.define | 104 |
| abstract_inverted_index.effect | 167, 223 |
| abstract_inverted_index.extend | 161 |
| abstract_inverted_index.health | 49 |
| abstract_inverted_index.issue, | 66 |
| abstract_inverted_index.mining | 37, 61, 184 |
| abstract_inverted_index.number | 88 |
| abstract_inverted_index.rather | 54 |
| abstract_inverted_index.reduce | 141 |
| abstract_inverted_index.showed | 203 |
| abstract_inverted_index.single | 170 |
| abstract_inverted_index.(T2DM). | 234 |
| abstract_inverted_index.Finding | 17 |
| abstract_inverted_index.Records | 190 |
| abstract_inverted_index.Type-II | 231 |
| abstract_inverted_index.address | 64 |
| abstract_inverted_index.biases. | 91 |
| abstract_inverted_index.causal, | 53 |
| abstract_inverted_index.chronic | 7 |
| abstract_inverted_index.concept | 155, 163 |
| abstract_inverted_index.explain | 213 |
| abstract_inverted_index.finding | 52 |
| abstract_inverted_index.medical | 219 |
| abstract_inverted_index.optimal | 19 |
| abstract_inverted_index.pattern | 32 |
| abstract_inverted_index.popular | 40 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.renders | 58 |
| abstract_inverted_index.suffers | 4 |
| abstract_inverted_index.Diabetes | 232 |
| abstract_inverted_index.Mellitus | 233 |
| abstract_inverted_index.diseases | 8, 28 |
| abstract_inverted_index.dropping | 134 |
| abstract_inverted_index.efficacy | 143 |
| abstract_inverted_index.findings | 216 |
| abstract_inverted_index.multiple | 6 |
| abstract_inverted_index.patients | 198 |
| abstract_inverted_index.patterns | 57, 206 |
| abstract_inverted_index.problem. | 34 |
| abstract_inverted_index.effective | 116 |
| abstract_inverted_index.evaluated | 180 |
| abstract_inverted_index.extracted | 208 |
| abstract_inverted_index.framework | 71, 152, 185 |
| abstract_inverted_index.problems, | 44 |
| abstract_inverted_index.regarding | 221 |
| abstract_inverted_index.treatment | 13 |
| abstract_inverted_index.Electronic | 188 |
| abstract_inverted_index.concurrent | 176 |
| abstract_inverted_index.correcting | 85 |
| abstract_inverted_index.diseases), | 107 |
| abstract_inverted_index.extracting | 79 |
| abstract_inverted_index.literature | 220 |
| abstract_inverted_index.population | 2 |
| abstract_inverted_index.treatment. | 146 |
| abstract_inverted_index.Association | 35 |
| abstract_inverted_index.association | 59 |
| abstract_inverted_index.cholesterol | 228 |
| abstract_inverted_index.combination | 139 |
| abstract_inverted_index.conditions. | 16 |
| abstract_inverted_index.exploration | 33 |
| abstract_inverted_index.quantifying | 165 |
| abstract_inverted_index.requirement | 47 |
| abstract_inverted_index.unsuitable. | 62 |
| abstract_inverted_index.Rubin-Neyman | 75 |
| abstract_inverted_index.associative, | 56 |
| abstract_inverted_index.combinations | 118, 131 |
| abstract_inverted_index.increasingly | 3 |
| abstract_inverted_index.intervention | 117, 130, 136, 158, 171 |
| abstract_inverted_index.sufficiently | 210 |
| abstract_inverted_index.Specifically, | 92 |
| abstract_inverted_index.combinatorial | 25, 31 |
| abstract_inverted_index.comprehensive | 12 |
| abstract_inverted_index.controversial | 215 |
| abstract_inverted_index.interventions | 97 |
| abstract_inverted_index.necessitating | 10 |
| abstract_inverted_index.observational | 83 |
| abstract_inverted_index.interventions. | 177 |
| abstract_inverted_index.subpopulation, | 124 |
| abstract_inverted_index.subpopulations | 105, 113 |
| abstract_inverted_index.simultaneously, | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |