Causal inference under mis-specification: adjustment based on the propensity score Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2201.12831
We study Bayesian approaches to causal inference via propensity score regression. Much of the Bayesian literature on propensity score methods have relied on approaches that cannot be viewed as fully Bayesian in the context of conventional `likelihood times prior' posterior inference; in addition, most methods rely on parametric and distributional assumptions, and presumed correct specification. We emphasize that causal inference is typically carried out in settings of mis-specification, and develop strategies for fully Bayesian inference that reflect this. We focus on methods based on decision-theoretic arguments, and show how inference based on loss-minimization can give valid and fully Bayesian inference. We propose a computational approach to inference based on the Bayesian bootstrap which has good Bayesian and frequentist properties.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2201.12831
- https://arxiv.org/pdf/2201.12831
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226066215
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226066215Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2201.12831Digital Object Identifier
- Title
-
Causal inference under mis-specification: adjustment based on the propensity scoreWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-30Full publication date if available
- Authors
-
David A. Stephens, Widemberg S. Nobre, Erica E. M. Moodie, Alexandra M. SchmidtList of authors in order
- Landing page
-
https://arxiv.org/abs/2201.12831Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2201.12831Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2201.12831Direct OA link when available
- Concepts
-
Frequentist inference, Inference, Bayesian inference, Causal inference, Propensity score matching, Bayesian probability, Computer science, Fiducial inference, Bayesian statistics, Bayesian linear regression, Context (archaeology), Econometrics, Machine learning, Artificial intelligence, Mathematics, Statistics, Paleontology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226066215 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2201.12831 |
| ids.doi | https://doi.org/10.48550/arxiv.2201.12831 |
| ids.openalex | https://openalex.org/W4226066215 |
| fwci | |
| type | preprint |
| title | Causal inference under mis-specification: adjustment based on the propensity score |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9965000152587891 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T11303 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9814000129699707 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Modeling and Causal Inference |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9401999711990356 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C162376815 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8977013826370239 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2158281 |
| concepts[0].display_name | Frequentist inference |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6756958365440369 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C160234255 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5993971824645996 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[2].display_name | Bayesian inference |
| concepts[3].id | https://openalex.org/C158600405 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5938158631324768 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[3].display_name | Causal inference |
| concepts[4].id | https://openalex.org/C17923572 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5913416147232056 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7250160 |
| concepts[4].display_name | Propensity score matching |
| concepts[5].id | https://openalex.org/C107673813 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5481602549552917 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[5].display_name | Bayesian probability |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.54638671875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C95167961 |
| concepts[7].level | 5 |
| concepts[7].score | 0.5121850371360779 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4483495 |
| concepts[7].display_name | Fiducial inference |
| concepts[8].id | https://openalex.org/C101112237 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4646683633327484 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4874481 |
| concepts[8].display_name | Bayesian statistics |
| concepts[9].id | https://openalex.org/C37903108 |
| concepts[9].level | 4 |
| concepts[9].score | 0.45037898421287537 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4874474 |
| concepts[9].display_name | Bayesian linear regression |
| concepts[10].id | https://openalex.org/C2779343474 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43609923124313354 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[10].display_name | Context (archaeology) |
| concepts[11].id | https://openalex.org/C149782125 |
| concepts[11].level | 1 |
| concepts[11].score | 0.43232083320617676 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[11].display_name | Econometrics |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4204959571361542 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4185892343521118 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.23933181166648865 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2124505639076233 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/frequentist-inference |
| keywords[0].score | 0.8977013826370239 |
| keywords[0].display_name | Frequentist inference |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6756958365440369 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/bayesian-inference |
| keywords[2].score | 0.5993971824645996 |
| keywords[2].display_name | Bayesian inference |
| keywords[3].id | https://openalex.org/keywords/causal-inference |
| keywords[3].score | 0.5938158631324768 |
| keywords[3].display_name | Causal inference |
| keywords[4].id | https://openalex.org/keywords/propensity-score-matching |
| keywords[4].score | 0.5913416147232056 |
| keywords[4].display_name | Propensity score matching |
| keywords[5].id | https://openalex.org/keywords/bayesian-probability |
| keywords[5].score | 0.5481602549552917 |
| keywords[5].display_name | Bayesian probability |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.54638671875 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/fiducial-inference |
| keywords[7].score | 0.5121850371360779 |
| keywords[7].display_name | Fiducial inference |
| keywords[8].id | https://openalex.org/keywords/bayesian-statistics |
| keywords[8].score | 0.4646683633327484 |
| keywords[8].display_name | Bayesian statistics |
| keywords[9].id | https://openalex.org/keywords/bayesian-linear-regression |
| keywords[9].score | 0.45037898421287537 |
| keywords[9].display_name | Bayesian linear regression |
| keywords[10].id | https://openalex.org/keywords/context |
| keywords[10].score | 0.43609923124313354 |
| keywords[10].display_name | Context (archaeology) |
| keywords[11].id | https://openalex.org/keywords/econometrics |
| keywords[11].score | 0.43232083320617676 |
| keywords[11].display_name | Econometrics |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.4204959571361542 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.4185892343521118 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.23933181166648865 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.2124505639076233 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2201.12831 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2201.12831 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2201.12831 |
| locations[1].id | doi:10.48550/arxiv.2201.12831 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2201.12831 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5085069223 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9811-7140 |
| authorships[0].author.display_name | David A. Stephens |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stephens, David A. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5065672938 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9188-5972 |
| authorships[1].author.display_name | Widemberg S. Nobre |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nobre, Widemberg S. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5048550846 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7225-3977 |
| authorships[2].author.display_name | Erica E. M. Moodie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Moodie, Erica E. M. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006297332 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6448-6367 |
| authorships[3].author.display_name | Alexandra M. Schmidt |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Schmidt, Alexandra M. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2201.12831 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Causal inference under mis-specification: adjustment based on the propensity score |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9965000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W3102972421, https://openalex.org/W2478683457, https://openalex.org/W4235385816, https://openalex.org/W3111430230, https://openalex.org/W4251525937, https://openalex.org/W2884750441, https://openalex.org/W4239322872, https://openalex.org/W4309301408, https://openalex.org/W2402785939, https://openalex.org/W606304192 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2201.12831 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2201.12831 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2201.12831 |
| primary_location.id | pmh:oai:arXiv.org:2201.12831 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2201.12831 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2201.12831 |
| publication_date | 2022-01-30 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 102 |
| abstract_inverted_index.We | 0, 55, 78, 100 |
| abstract_inverted_index.as | 28 |
| abstract_inverted_index.be | 26 |
| abstract_inverted_index.in | 31, 41, 64 |
| abstract_inverted_index.is | 60 |
| abstract_inverted_index.of | 12, 34, 66 |
| abstract_inverted_index.on | 16, 22, 46, 80, 83, 91, 108 |
| abstract_inverted_index.to | 4, 105 |
| abstract_inverted_index.and | 48, 51, 68, 86, 96, 116 |
| abstract_inverted_index.can | 93 |
| abstract_inverted_index.for | 71 |
| abstract_inverted_index.has | 113 |
| abstract_inverted_index.how | 88 |
| abstract_inverted_index.out | 63 |
| abstract_inverted_index.the | 13, 32, 109 |
| abstract_inverted_index.via | 7 |
| abstract_inverted_index.Much | 11 |
| abstract_inverted_index.give | 94 |
| abstract_inverted_index.good | 114 |
| abstract_inverted_index.have | 20 |
| abstract_inverted_index.most | 43 |
| abstract_inverted_index.rely | 45 |
| abstract_inverted_index.show | 87 |
| abstract_inverted_index.that | 24, 57, 75 |
| abstract_inverted_index.based | 82, 90, 107 |
| abstract_inverted_index.focus | 79 |
| abstract_inverted_index.fully | 29, 72, 97 |
| abstract_inverted_index.score | 9, 18 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.this. | 77 |
| abstract_inverted_index.times | 37 |
| abstract_inverted_index.valid | 95 |
| abstract_inverted_index.which | 112 |
| abstract_inverted_index.cannot | 25 |
| abstract_inverted_index.causal | 5, 58 |
| abstract_inverted_index.prior' | 38 |
| abstract_inverted_index.relied | 21 |
| abstract_inverted_index.viewed | 27 |
| abstract_inverted_index.carried | 62 |
| abstract_inverted_index.context | 33 |
| abstract_inverted_index.correct | 53 |
| abstract_inverted_index.develop | 69 |
| abstract_inverted_index.methods | 19, 44, 81 |
| abstract_inverted_index.propose | 101 |
| abstract_inverted_index.reflect | 76 |
| abstract_inverted_index.Bayesian | 2, 14, 30, 73, 98, 110, 115 |
| abstract_inverted_index.approach | 104 |
| abstract_inverted_index.presumed | 52 |
| abstract_inverted_index.settings | 65 |
| abstract_inverted_index.addition, | 42 |
| abstract_inverted_index.bootstrap | 111 |
| abstract_inverted_index.emphasize | 56 |
| abstract_inverted_index.inference | 6, 59, 74, 89, 106 |
| abstract_inverted_index.posterior | 39 |
| abstract_inverted_index.typically | 61 |
| abstract_inverted_index.approaches | 3, 23 |
| abstract_inverted_index.arguments, | 85 |
| abstract_inverted_index.inference. | 99 |
| abstract_inverted_index.inference; | 40 |
| abstract_inverted_index.literature | 15 |
| abstract_inverted_index.parametric | 47 |
| abstract_inverted_index.propensity | 8, 17 |
| abstract_inverted_index.strategies | 70 |
| abstract_inverted_index.`likelihood | 36 |
| abstract_inverted_index.frequentist | 117 |
| abstract_inverted_index.properties. | 118 |
| abstract_inverted_index.regression. | 10 |
| abstract_inverted_index.assumptions, | 50 |
| abstract_inverted_index.conventional | 35 |
| abstract_inverted_index.computational | 103 |
| abstract_inverted_index.distributional | 49 |
| abstract_inverted_index.specification. | 54 |
| abstract_inverted_index.loss-minimization | 92 |
| abstract_inverted_index.decision-theoretic | 84 |
| abstract_inverted_index.mis-specification, | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |