Causal Inference Under Mis-Specification: Adjustment Based on the Propensity Score (with Discussion) Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1214/22-ba1322
We study Bayesian approaches to causal inference via propensity score regression. Much of Bayesian methodology relies on parametric and distributional assumptions, with presumed correct specification, whereas the extant propensity score methods in Bayesian literature have relied on approaches that cannot be viewed as fully Bayesian in the context of conventional 'likelihood times prior' posterior inference. We emphasize that causal inference is typically carried out in settings of mis-specification, and develop strategies for fully Bayesian inference that reflect this. We focus on methods based on decision-theoretic arguments, and show how inference based on loss-minimization can give valid and fully Bayesian inference. We propose a computational approach to inference based on the Bayesian bootstrap which has good Bayesian and frequentist properties.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1214/22-ba1322
- https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Causal-Inference-Under-Mis-Specification--Adjustment-Based-on-the/10.1214/22-BA1322.pdf
- OA Status
- diamond
- Cited By
- 9
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4288063646
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4288063646Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1214/22-ba1322Digital Object Identifier
- Title
-
Causal Inference Under Mis-Specification: Adjustment Based on the Propensity Score (with Discussion)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-27Full publication date if available
- Authors
-
David A. Stephens, Widemberg S. Nobre, Erica E. M. Moodie, Alexandra M. SchmidtList of authors in order
- Landing page
-
https://doi.org/10.1214/22-ba1322Publisher landing page
- PDF URL
-
https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Causal-Inference-Under-Mis-Specification--Adjustment-Based-on-the/10.1214/22-BA1322.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Causal-Inference-Under-Mis-Specification--Adjustment-Based-on-the/10.1214/22-BA1322.pdfDirect OA link when available
- Concepts
-
Frequentist inference, Inference, Bayesian inference, Bayesian probability, Computer science, Causal inference, Bayesian statistics, Propensity score matching, Fiducial inference, Machine learning, Bayesian linear regression, Artificial intelligence, Econometrics, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 4, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4288063646 |
|---|---|
| doi | https://doi.org/10.1214/22-ba1322 |
| ids.doi | https://doi.org/10.1214/22-ba1322 |
| ids.openalex | https://openalex.org/W4288063646 |
| fwci | 3.75696747 |
| type | article |
| title | Causal Inference Under Mis-Specification: Adjustment Based on the Propensity Score (with Discussion) |
| biblio.issue | 2 |
| biblio.volume | 18 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C162376815 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8648779392242432 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2158281 |
| concepts[0].display_name | Frequentist inference |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6169459819793701 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C160234255 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5970534682273865 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[2].display_name | Bayesian inference |
| concepts[3].id | https://openalex.org/C107673813 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5370871424674988 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[3].display_name | Bayesian probability |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5338956117630005 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C158600405 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5173611044883728 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[5].display_name | Causal inference |
| concepts[6].id | https://openalex.org/C101112237 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5032619833946228 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4874481 |
| concepts[6].display_name | Bayesian statistics |
| concepts[7].id | https://openalex.org/C17923572 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5007104873657227 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7250160 |
| concepts[7].display_name | Propensity score matching |
| concepts[8].id | https://openalex.org/C95167961 |
| concepts[8].level | 5 |
| concepts[8].score | 0.46641433238983154 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4483495 |
| concepts[8].display_name | Fiducial inference |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4519661068916321 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C37903108 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4493806064128876 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4874474 |
| concepts[10].display_name | Bayesian linear regression |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.43533551692962646 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C149782125 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3853904902935028 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[12].display_name | Econometrics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.24904555082321167 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.19967138767242432 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/frequentist-inference |
| keywords[0].score | 0.8648779392242432 |
| keywords[0].display_name | Frequentist inference |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6169459819793701 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/bayesian-inference |
| keywords[2].score | 0.5970534682273865 |
| keywords[2].display_name | Bayesian inference |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.5370871424674988 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5338956117630005 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/causal-inference |
| keywords[5].score | 0.5173611044883728 |
| keywords[5].display_name | Causal inference |
| keywords[6].id | https://openalex.org/keywords/bayesian-statistics |
| keywords[6].score | 0.5032619833946228 |
| keywords[6].display_name | Bayesian statistics |
| keywords[7].id | https://openalex.org/keywords/propensity-score-matching |
| keywords[7].score | 0.5007104873657227 |
| keywords[7].display_name | Propensity score matching |
| keywords[8].id | https://openalex.org/keywords/fiducial-inference |
| keywords[8].score | 0.46641433238983154 |
| keywords[8].display_name | Fiducial inference |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4519661068916321 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/bayesian-linear-regression |
| keywords[10].score | 0.4493806064128876 |
| keywords[10].display_name | Bayesian linear regression |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.43533551692962646 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/econometrics |
| keywords[12].score | 0.3853904902935028 |
| keywords[12].display_name | Econometrics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.24904555082321167 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.19967138767242432 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1214/22-ba1322 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S127898559 |
| locations[0].source.issn | 1931-6690, 1936-0975 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1931-6690 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bayesian Analysis |
| locations[0].source.host_organization | https://openalex.org/P4310321640 |
| locations[0].source.host_organization_name | International Society for Bayesian Analysis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321640 |
| locations[0].source.host_organization_lineage_names | International Society for Bayesian Analysis |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Causal-Inference-Under-Mis-Specification--Adjustment-Based-on-the/10.1214/22-BA1322.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bayesian Analysis |
| locations[0].landing_page_url | https://doi.org/10.1214/22-ba1322 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085069223 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9811-7140 |
| authorships[0].author.display_name | David A. Stephens |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics, McGill University, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I5023651 |
| authorships[0].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | McGill University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David A. Stephens |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics and Statistics, McGill University, Canada |
| authorships[1].author.id | https://openalex.org/A5065672938 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9188-5972 |
| authorships[1].author.display_name | Widemberg S. Nobre |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I122140584, https://openalex.org/I83648350 |
| authorships[1].affiliations[0].raw_affiliation_string | Departamento de Métodos Estatísticos, Universidade Federal do Rio de Janeiro, Brazil |
| authorships[1].institutions[0].id | https://openalex.org/I83648350 |
| authorships[1].institutions[0].ror | https://ror.org/04tec8z30 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I83648350 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade Federal do Estado do Rio de Janeiro |
| authorships[1].institutions[1].id | https://openalex.org/I122140584 |
| authorships[1].institutions[1].ror | https://ror.org/03490as77 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I122140584 |
| authorships[1].institutions[1].country_code | BR |
| authorships[1].institutions[1].display_name | Universidade Federal do Rio de Janeiro |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Widemberg S. Nobre |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Departamento de Métodos Estatísticos, Universidade Federal do Rio de Janeiro, Brazil |
| authorships[2].author.id | https://openalex.org/A5048550846 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7225-3977 |
| authorships[2].author.display_name | Erica E. M. Moodie |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, McGill University, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I5023651 |
| authorships[2].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | McGill University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Erica E. M. Moodie |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Epidemiology and Biostatistics, McGill University, Canada |
| authorships[3].author.id | https://openalex.org/A5006297332 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6448-6367 |
| authorships[3].author.display_name | Alexandra M. Schmidt |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, McGill University, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I5023651 |
| authorships[3].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | McGill University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Alexandra M. Schmidt |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Epidemiology and Biostatistics, McGill University, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Causal-Inference-Under-Mis-Specification--Adjustment-Based-on-the/10.1214/22-BA1322.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Causal Inference Under Mis-Specification: Adjustment Based on the Propensity Score (with Discussion) |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W2478683457, https://openalex.org/W2111053936, https://openalex.org/W232830309, https://openalex.org/W1980584819, https://openalex.org/W2789413038, https://openalex.org/W4300815303, https://openalex.org/W4250784999, https://openalex.org/W2951176680, https://openalex.org/W2957396730, https://openalex.org/W3004826497 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1214/22-ba1322 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S127898559 |
| best_oa_location.source.issn | 1931-6690, 1936-0975 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1931-6690 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bayesian Analysis |
| best_oa_location.source.host_organization | https://openalex.org/P4310321640 |
| best_oa_location.source.host_organization_name | International Society for Bayesian Analysis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321640 |
| best_oa_location.source.host_organization_lineage_names | International Society for Bayesian Analysis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Causal-Inference-Under-Mis-Specification--Adjustment-Based-on-the/10.1214/22-BA1322.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bayesian Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.1214/22-ba1322 |
| primary_location.id | doi:10.1214/22-ba1322 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S127898559 |
| primary_location.source.issn | 1931-6690, 1936-0975 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1931-6690 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bayesian Analysis |
| primary_location.source.host_organization | https://openalex.org/P4310321640 |
| primary_location.source.host_organization_name | International Society for Bayesian Analysis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321640 |
| primary_location.source.host_organization_lineage_names | International Society for Bayesian Analysis |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Causal-Inference-Under-Mis-Specification--Adjustment-Based-on-the/10.1214/22-BA1322.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bayesian Analysis |
| primary_location.landing_page_url | https://doi.org/10.1214/22-ba1322 |
| publication_date | 2022-07-27 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2486301716, https://openalex.org/W2962909381, https://openalex.org/W2064505280, https://openalex.org/W2753668281, https://openalex.org/W2983458597, https://openalex.org/W3115836438, https://openalex.org/W1973410308, https://openalex.org/W2060442802, https://openalex.org/W2243651912, https://openalex.org/W2963690804, https://openalex.org/W1983922269, https://openalex.org/W2917575782, https://openalex.org/W2770197206, https://openalex.org/W2476578831, https://openalex.org/W2736618479, https://openalex.org/W3004404638, https://openalex.org/W2058505671, https://openalex.org/W1978108654, https://openalex.org/W2111078766, https://openalex.org/W2063437661, https://openalex.org/W3027200380, https://openalex.org/W3004330284, https://openalex.org/W2054829060, https://openalex.org/W3017611878, https://openalex.org/W2143891888, https://openalex.org/W3206977872, https://openalex.org/W2990200281, https://openalex.org/W2055154647, https://openalex.org/W2132917208, https://openalex.org/W6779136900, https://openalex.org/W1683369961, https://openalex.org/W3022683461, https://openalex.org/W2971863390, https://openalex.org/W1997656864, https://openalex.org/W2921231720, https://openalex.org/W2793196007, https://openalex.org/W290691977, https://openalex.org/W1694908962, https://openalex.org/W3121449926, https://openalex.org/W2001994823, https://openalex.org/W2063846874, https://openalex.org/W2150291618, https://openalex.org/W2033302051, https://openalex.org/W2018220145, https://openalex.org/W1638753340, https://openalex.org/W3106439409, https://openalex.org/W3098796344 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 102 |
| abstract_inverted_index.We | 0, 55, 78, 100 |
| abstract_inverted_index.as | 42 |
| abstract_inverted_index.be | 40 |
| abstract_inverted_index.in | 31, 45, 64 |
| abstract_inverted_index.is | 60 |
| abstract_inverted_index.of | 12, 48, 66 |
| abstract_inverted_index.on | 16, 36, 80, 83, 91, 108 |
| abstract_inverted_index.to | 4, 105 |
| abstract_inverted_index.and | 18, 68, 86, 96, 116 |
| abstract_inverted_index.can | 93 |
| abstract_inverted_index.for | 71 |
| abstract_inverted_index.has | 113 |
| abstract_inverted_index.how | 88 |
| abstract_inverted_index.out | 63 |
| abstract_inverted_index.the | 26, 46, 109 |
| abstract_inverted_index.via | 7 |
| abstract_inverted_index.Much | 11 |
| abstract_inverted_index.give | 94 |
| abstract_inverted_index.good | 114 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.show | 87 |
| abstract_inverted_index.that | 38, 57, 75 |
| abstract_inverted_index.with | 21 |
| abstract_inverted_index.based | 82, 90, 107 |
| abstract_inverted_index.focus | 79 |
| abstract_inverted_index.fully | 43, 72, 97 |
| abstract_inverted_index.score | 9, 29 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.this. | 77 |
| abstract_inverted_index.times | 51 |
| abstract_inverted_index.valid | 95 |
| abstract_inverted_index.which | 112 |
| abstract_inverted_index.cannot | 39 |
| abstract_inverted_index.causal | 5, 58 |
| abstract_inverted_index.extant | 27 |
| abstract_inverted_index.prior' | 52 |
| abstract_inverted_index.relied | 35 |
| abstract_inverted_index.relies | 15 |
| abstract_inverted_index.viewed | 41 |
| abstract_inverted_index.carried | 62 |
| abstract_inverted_index.context | 47 |
| abstract_inverted_index.correct | 23 |
| abstract_inverted_index.develop | 69 |
| abstract_inverted_index.methods | 30, 81 |
| abstract_inverted_index.propose | 101 |
| abstract_inverted_index.reflect | 76 |
| abstract_inverted_index.whereas | 25 |
| abstract_inverted_index.Bayesian | 2, 13, 32, 44, 73, 98, 110, 115 |
| abstract_inverted_index.approach | 104 |
| abstract_inverted_index.presumed | 22 |
| abstract_inverted_index.settings | 65 |
| abstract_inverted_index.bootstrap | 111 |
| abstract_inverted_index.emphasize | 56 |
| abstract_inverted_index.inference | 6, 59, 74, 89, 106 |
| abstract_inverted_index.posterior | 53 |
| abstract_inverted_index.typically | 61 |
| abstract_inverted_index.approaches | 3, 37 |
| abstract_inverted_index.arguments, | 85 |
| abstract_inverted_index.inference. | 54, 99 |
| abstract_inverted_index.literature | 33 |
| abstract_inverted_index.parametric | 17 |
| abstract_inverted_index.propensity | 8, 28 |
| abstract_inverted_index.strategies | 70 |
| abstract_inverted_index.'likelihood | 50 |
| abstract_inverted_index.frequentist | 117 |
| abstract_inverted_index.methodology | 14 |
| abstract_inverted_index.properties. | 118 |
| abstract_inverted_index.regression. | 10 |
| abstract_inverted_index.assumptions, | 20 |
| abstract_inverted_index.conventional | 49 |
| abstract_inverted_index.computational | 103 |
| abstract_inverted_index.distributional | 19 |
| abstract_inverted_index.specification, | 24 |
| abstract_inverted_index.loss-minimization | 92 |
| abstract_inverted_index.decision-theoretic | 84 |
| abstract_inverted_index.mis-specification, | 67 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.89456738 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |