Causal Transformer for Estimating Counterfactual Outcomes Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.07258
Estimating counterfactual outcomes over time from observational data is relevant for many applications (e.g., personalized medicine). Yet, state-of-the-art methods build upon simple long short-term memory (LSTM) networks, thus rendering inferences for complex, long-range dependencies challenging. In this paper, we develop a novel Causal Transformer for estimating counterfactual outcomes over time. Our model is specifically designed to capture complex, long-range dependencies among time-varying confounders. For this, we combine three transformer subnetworks with separate inputs for time-varying covariates, previous treatments, and previous outcomes into a joint network with in-between cross-attentions. We further develop a custom, end-to-end training procedure for our Causal Transformer. Specifically, we propose a novel counterfactual domain confusion loss to address confounding bias: it aims to learn adversarial balanced representations, so that they are predictive of the next outcome but non-predictive of the current treatment assignment. We evaluate our Causal Transformer based on synthetic and real-world datasets, where it achieves superior performance over current baselines. To the best of our knowledge, this is the first work proposing transformer-based architecture for estimating counterfactual outcomes from longitudinal data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.07258
- https://arxiv.org/pdf/2204.07258
- OA Status
- green
- Cited By
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224002928
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224002928Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.07258Digital Object Identifier
- Title
-
Causal Transformer for Estimating Counterfactual OutcomesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-14Full publication date if available
- Authors
-
Valentyn Melnychuk, Dennis Frauen, Stefan FeuerriegelList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.07258Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.07258Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.07258Direct OA link when available
- Concepts
-
Counterfactual thinking, Computer science, Transformer, Machine learning, Observational study, Confounding, Artificial intelligence, Econometrics, Data mining, Mathematics, Statistics, Engineering, Psychology, Voltage, Social psychology, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 6, 2023: 8, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224002928 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.07258 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.07258 |
| ids.openalex | https://openalex.org/W4224002928 |
| fwci | 3.32857994 |
| type | preprint |
| title | Causal Transformer for Estimating Counterfactual Outcomes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T12026 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9850999712944031 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Explainable Artificial Intelligence (XAI) |
| topics[2].id | https://openalex.org/T10206 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9589999914169312 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Meta-analysis and systematic reviews |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108650721 |
| concepts[0].level | 2 |
| concepts[0].score | 0.885322093963623 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1783253 |
| concepts[0].display_name | Counterfactual thinking |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6721417307853699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.557944118976593 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5029613375663757 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C23131810 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43521618843078613 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[4].display_name | Observational study |
| concepts[5].id | https://openalex.org/C77350462 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43476828932762146 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1125472 |
| concepts[5].display_name | Confounding |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.415203332901001 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3875459134578705 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33876854181289673 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16374725103378296 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.156030535697937 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12346145510673523 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1121000349521637 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C165801399 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[13].display_name | Voltage |
| concepts[14].id | https://openalex.org/C77805123 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[14].display_name | Social psychology |
| concepts[15].id | https://openalex.org/C119599485 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[15].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/counterfactual-thinking |
| keywords[0].score | 0.885322093963623 |
| keywords[0].display_name | Counterfactual thinking |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6721417307853699 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.557944118976593 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5029613375663757 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/observational-study |
| keywords[4].score | 0.43521618843078613 |
| keywords[4].display_name | Observational study |
| keywords[5].id | https://openalex.org/keywords/confounding |
| keywords[5].score | 0.43476828932762146 |
| keywords[5].display_name | Confounding |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.415203332901001 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.3875459134578705 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.33876854181289673 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.16374725103378296 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.156030535697937 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.12346145510673523 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.1121000349521637 |
| keywords[12].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.07258 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.07258 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.07258 |
| locations[1].id | doi:10.48550/arxiv.2204.07258 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.07258 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5012167803 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2401-6803 |
| authorships[0].author.display_name | Valentyn Melnychuk |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Melnychuk, Valentyn |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060813780 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6526-1162 |
| authorships[1].author.display_name | Dennis Frauen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Frauen, Dennis |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5081442873 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7856-8729 |
| authorships[2].author.display_name | Stefan Feuerriegel |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Feuerriegel, Stefan |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.07258 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Causal Transformer for Estimating Counterfactual Outcomes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W3006053565, https://openalex.org/W4212952002, https://openalex.org/W4238440528, https://openalex.org/W1975046232, https://openalex.org/W2044678740, https://openalex.org/W2166247085, https://openalex.org/W2329095872, https://openalex.org/W4281606568, https://openalex.org/W3216617598, https://openalex.org/W4230495490 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.07258 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.07258 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.07258 |
| primary_location.id | pmh:oai:arXiv.org:2204.07258 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.07258 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.07258 |
| publication_date | 2022-04-14 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 40, 82, 91, 103 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.To | 155 |
| abstract_inverted_index.We | 88, 136 |
| abstract_inverted_index.is | 8, 52, 162 |
| abstract_inverted_index.it | 113, 148 |
| abstract_inverted_index.of | 125, 131, 158 |
| abstract_inverted_index.on | 142 |
| abstract_inverted_index.so | 120 |
| abstract_inverted_index.to | 55, 109, 115 |
| abstract_inverted_index.we | 38, 65, 101 |
| abstract_inverted_index.For | 63 |
| abstract_inverted_index.Our | 50 |
| abstract_inverted_index.and | 78, 144 |
| abstract_inverted_index.are | 123 |
| abstract_inverted_index.but | 129 |
| abstract_inverted_index.for | 10, 30, 44, 73, 96, 169 |
| abstract_inverted_index.our | 97, 138, 159 |
| abstract_inverted_index.the | 126, 132, 156, 163 |
| abstract_inverted_index.Yet, | 16 |
| abstract_inverted_index.aims | 114 |
| abstract_inverted_index.best | 157 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.from | 5, 173 |
| abstract_inverted_index.into | 81 |
| abstract_inverted_index.long | 22 |
| abstract_inverted_index.loss | 108 |
| abstract_inverted_index.many | 11 |
| abstract_inverted_index.next | 127 |
| abstract_inverted_index.over | 3, 48, 152 |
| abstract_inverted_index.that | 121 |
| abstract_inverted_index.they | 122 |
| abstract_inverted_index.this | 36, 161 |
| abstract_inverted_index.thus | 27 |
| abstract_inverted_index.time | 4 |
| abstract_inverted_index.upon | 20 |
| abstract_inverted_index.with | 70, 85 |
| abstract_inverted_index.work | 165 |
| abstract_inverted_index.among | 60 |
| abstract_inverted_index.based | 141 |
| abstract_inverted_index.bias: | 112 |
| abstract_inverted_index.build | 19 |
| abstract_inverted_index.data. | 175 |
| abstract_inverted_index.first | 164 |
| abstract_inverted_index.joint | 83 |
| abstract_inverted_index.learn | 116 |
| abstract_inverted_index.model | 51 |
| abstract_inverted_index.novel | 41, 104 |
| abstract_inverted_index.this, | 64 |
| abstract_inverted_index.three | 67 |
| abstract_inverted_index.time. | 49 |
| abstract_inverted_index.where | 147 |
| abstract_inverted_index.(LSTM) | 25 |
| abstract_inverted_index.(e.g., | 13 |
| abstract_inverted_index.Causal | 42, 98, 139 |
| abstract_inverted_index.domain | 106 |
| abstract_inverted_index.inputs | 72 |
| abstract_inverted_index.memory | 24 |
| abstract_inverted_index.paper, | 37 |
| abstract_inverted_index.simple | 21 |
| abstract_inverted_index.address | 110 |
| abstract_inverted_index.capture | 56 |
| abstract_inverted_index.combine | 66 |
| abstract_inverted_index.current | 133, 153 |
| abstract_inverted_index.custom, | 92 |
| abstract_inverted_index.develop | 39, 90 |
| abstract_inverted_index.further | 89 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.network | 84 |
| abstract_inverted_index.outcome | 128 |
| abstract_inverted_index.propose | 102 |
| abstract_inverted_index.achieves | 149 |
| abstract_inverted_index.balanced | 118 |
| abstract_inverted_index.complex, | 31, 57 |
| abstract_inverted_index.designed | 54 |
| abstract_inverted_index.evaluate | 137 |
| abstract_inverted_index.outcomes | 2, 47, 80, 172 |
| abstract_inverted_index.previous | 76, 79 |
| abstract_inverted_index.relevant | 9 |
| abstract_inverted_index.separate | 71 |
| abstract_inverted_index.superior | 150 |
| abstract_inverted_index.training | 94 |
| abstract_inverted_index.confusion | 107 |
| abstract_inverted_index.datasets, | 146 |
| abstract_inverted_index.networks, | 26 |
| abstract_inverted_index.procedure | 95 |
| abstract_inverted_index.proposing | 166 |
| abstract_inverted_index.rendering | 28 |
| abstract_inverted_index.synthetic | 143 |
| abstract_inverted_index.treatment | 134 |
| abstract_inverted_index.Estimating | 0 |
| abstract_inverted_index.baselines. | 154 |
| abstract_inverted_index.end-to-end | 93 |
| abstract_inverted_index.estimating | 45, 170 |
| abstract_inverted_index.in-between | 86 |
| abstract_inverted_index.inferences | 29 |
| abstract_inverted_index.knowledge, | 160 |
| abstract_inverted_index.long-range | 32, 58 |
| abstract_inverted_index.medicine). | 15 |
| abstract_inverted_index.predictive | 124 |
| abstract_inverted_index.real-world | 145 |
| abstract_inverted_index.short-term | 23 |
| abstract_inverted_index.Transformer | 43, 140 |
| abstract_inverted_index.adversarial | 117 |
| abstract_inverted_index.assignment. | 135 |
| abstract_inverted_index.confounding | 111 |
| abstract_inverted_index.covariates, | 75 |
| abstract_inverted_index.performance | 151 |
| abstract_inverted_index.subnetworks | 69 |
| abstract_inverted_index.transformer | 68 |
| abstract_inverted_index.treatments, | 77 |
| abstract_inverted_index.Transformer. | 99 |
| abstract_inverted_index.applications | 12 |
| abstract_inverted_index.architecture | 168 |
| abstract_inverted_index.challenging. | 34 |
| abstract_inverted_index.confounders. | 62 |
| abstract_inverted_index.dependencies | 33, 59 |
| abstract_inverted_index.longitudinal | 174 |
| abstract_inverted_index.personalized | 14 |
| abstract_inverted_index.specifically | 53 |
| abstract_inverted_index.time-varying | 61, 74 |
| abstract_inverted_index.Specifically, | 100 |
| abstract_inverted_index.observational | 6 |
| abstract_inverted_index.counterfactual | 1, 46, 105, 171 |
| abstract_inverted_index.non-predictive | 130 |
| abstract_inverted_index.representations, | 119 |
| abstract_inverted_index.state-of-the-art | 17 |
| abstract_inverted_index.cross-attentions. | 87 |
| abstract_inverted_index.transformer-based | 167 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.90353345 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |