CausalPlan: Empowering Efficient LLM Multi-Agent Collaboration Through Causality-Driven Planning Article Swipe
YOU?
·
· 2025
· Open Access
·
Large language model (LLM) agents-especially smaller, open-source models-often produce causally invalid or incoherent actions in collaborative tasks due to their reliance on surface-level correlations rather than grounded causal reasoning. This limitation undermines their performance in terms of coordination and planning in dynamic environments. We address this challenge with CausalPlan, a two-phase framework that integrates explicit structural causal reasoning into the LLM planning process. At the core of CausalPlan is the Structural Causal Action (SCA) model, which learns a causal graph from agent trajectories to capture how prior actions and current environment states influence future decisions. This structure is then used to guide action selection by assigning causal scores to LLM-generated proposals, reweighting them accordingly, or falling back to causally grounded alternatives when needed. By embedding this causal knowledge directly into the decision loop, CausalPlan constrains planning to intervention-consistent behaviours without requiring fine-tuning of the LLM itself. We evaluate CausalPlan on the Overcooked-AI benchmark across five multi-agent coordination tasks and four LLMs of varying sizes: Gemma-7B, Llama-8B, Qwen-14B, and Llama-70B. Experimental results show that CausalPlan consistently reduces invalid actions and improves collaboration in both AI-AI and human-AI settings, outperforming strong reinforcement learning baselines. Our findings highlight the value of causality-driven planning for deploying efficient, interpretable, and generalisable multi-agent LLM systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.13721
- https://arxiv.org/pdf/2508.13721
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414536845
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414536845Canonical identifier for this work in OpenAlex
- Title
-
CausalPlan: Empowering Efficient LLM Multi-Agent Collaboration Through Causality-Driven PlanningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-19Full publication date if available
- Authors
-
Minh Hoang Nguyen, Van Dai Do, Dung Huu Nguyen, Thin Nguyen, Hung LêList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.13721Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.13721Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.13721Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414536845 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4414536845 |
| fwci | 0.0 |
| type | article |
| title | CausalPlan: Empowering Efficient LLM Multi-Agent Collaboration Through Causality-Driven Planning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10215 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9926999807357788 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Semantic Web and Ontologies |
| topics[1].id | https://openalex.org/T10703 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.9747999906539917 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1404 |
| topics[1].subfield.display_name | Management Information Systems |
| topics[1].display_name | Business Process Modeling and Analysis |
| topics[2].id | https://openalex.org/T10456 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9700999855995178 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Multi-Agent Systems and Negotiation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.13721 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.13721 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.13721 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5022745904 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9873-5256 |
| authorships[0].author.display_name | Minh Hoang Nguyen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nguyen, Minh Hoang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009182701 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Van Dai Do |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Do, Van Dai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103781292 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Dung Huu Nguyen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nguyen, Dung |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100705489 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3467-8963 |
| authorships[3].author.display_name | Thin Nguyen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nguyen, Thin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101936199 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3126-184X |
| authorships[4].author.display_name | Hung Lê |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Le, Hung |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.13721 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CausalPlan: Empowering Efficient LLM Multi-Agent Collaboration Through Causality-Driven Planning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10215 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9926999807357788 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Semantic Web and Ontologies |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.13721 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.13721 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.13721 |
| primary_location.id | pmh:oai:arXiv.org:2508.13721 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.13721 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.13721 |
| publication_date | 2025-08-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 77 |
| abstract_inverted_index.At | 63 |
| abstract_inverted_index.By | 123 |
| abstract_inverted_index.We | 43, 146 |
| abstract_inverted_index.by | 104 |
| abstract_inverted_index.in | 14, 34, 40, 181 |
| abstract_inverted_index.is | 68, 97 |
| abstract_inverted_index.of | 36, 66, 142, 161, 197 |
| abstract_inverted_index.on | 21, 149 |
| abstract_inverted_index.or | 11, 114 |
| abstract_inverted_index.to | 18, 83, 100, 108, 117, 136 |
| abstract_inverted_index.LLM | 60, 144, 207 |
| abstract_inverted_index.Our | 192 |
| abstract_inverted_index.and | 38, 88, 158, 167, 178, 184, 204 |
| abstract_inverted_index.due | 17 |
| abstract_inverted_index.for | 200 |
| abstract_inverted_index.how | 85 |
| abstract_inverted_index.the | 59, 64, 69, 130, 143, 150, 195 |
| abstract_inverted_index.LLMs | 160 |
| abstract_inverted_index.This | 29, 95 |
| abstract_inverted_index.back | 116 |
| abstract_inverted_index.both | 182 |
| abstract_inverted_index.core | 65 |
| abstract_inverted_index.five | 154 |
| abstract_inverted_index.four | 159 |
| abstract_inverted_index.from | 80 |
| abstract_inverted_index.into | 58, 129 |
| abstract_inverted_index.show | 171 |
| abstract_inverted_index.than | 25 |
| abstract_inverted_index.that | 52, 172 |
| abstract_inverted_index.them | 112 |
| abstract_inverted_index.then | 98 |
| abstract_inverted_index.this | 45, 125 |
| abstract_inverted_index.used | 99 |
| abstract_inverted_index.when | 121 |
| abstract_inverted_index.with | 47 |
| abstract_inverted_index.(LLM) | 3 |
| abstract_inverted_index.(SCA) | 73 |
| abstract_inverted_index.AI-AI | 183 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.agent | 81 |
| abstract_inverted_index.graph | 79 |
| abstract_inverted_index.guide | 101 |
| abstract_inverted_index.loop, | 132 |
| abstract_inverted_index.model | 2 |
| abstract_inverted_index.prior | 86 |
| abstract_inverted_index.tasks | 16, 157 |
| abstract_inverted_index.terms | 35 |
| abstract_inverted_index.their | 19, 32 |
| abstract_inverted_index.value | 196 |
| abstract_inverted_index.which | 75 |
| abstract_inverted_index.Action | 72 |
| abstract_inverted_index.Causal | 71 |
| abstract_inverted_index.across | 153 |
| abstract_inverted_index.action | 102 |
| abstract_inverted_index.causal | 27, 56, 78, 106, 126 |
| abstract_inverted_index.future | 93 |
| abstract_inverted_index.learns | 76 |
| abstract_inverted_index.model, | 74 |
| abstract_inverted_index.rather | 24 |
| abstract_inverted_index.scores | 107 |
| abstract_inverted_index.sizes: | 163 |
| abstract_inverted_index.states | 91 |
| abstract_inverted_index.strong | 188 |
| abstract_inverted_index.actions | 13, 87, 177 |
| abstract_inverted_index.address | 44 |
| abstract_inverted_index.capture | 84 |
| abstract_inverted_index.current | 89 |
| abstract_inverted_index.dynamic | 41 |
| abstract_inverted_index.falling | 115 |
| abstract_inverted_index.invalid | 10, 176 |
| abstract_inverted_index.itself. | 145 |
| abstract_inverted_index.needed. | 122 |
| abstract_inverted_index.produce | 8 |
| abstract_inverted_index.reduces | 175 |
| abstract_inverted_index.results | 170 |
| abstract_inverted_index.varying | 162 |
| abstract_inverted_index.without | 139 |
| abstract_inverted_index.causally | 9, 118 |
| abstract_inverted_index.decision | 131 |
| abstract_inverted_index.directly | 128 |
| abstract_inverted_index.evaluate | 147 |
| abstract_inverted_index.explicit | 54 |
| abstract_inverted_index.findings | 193 |
| abstract_inverted_index.grounded | 26, 119 |
| abstract_inverted_index.human-AI | 185 |
| abstract_inverted_index.improves | 179 |
| abstract_inverted_index.language | 1 |
| abstract_inverted_index.learning | 190 |
| abstract_inverted_index.planning | 39, 61, 135, 199 |
| abstract_inverted_index.process. | 62 |
| abstract_inverted_index.reliance | 20 |
| abstract_inverted_index.smaller, | 5 |
| abstract_inverted_index.systems. | 208 |
| abstract_inverted_index.Gemma-7B, | 164 |
| abstract_inverted_index.Llama-8B, | 165 |
| abstract_inverted_index.Qwen-14B, | 166 |
| abstract_inverted_index.assigning | 105 |
| abstract_inverted_index.benchmark | 152 |
| abstract_inverted_index.challenge | 46 |
| abstract_inverted_index.deploying | 201 |
| abstract_inverted_index.embedding | 124 |
| abstract_inverted_index.framework | 51 |
| abstract_inverted_index.highlight | 194 |
| abstract_inverted_index.influence | 92 |
| abstract_inverted_index.knowledge | 127 |
| abstract_inverted_index.reasoning | 57 |
| abstract_inverted_index.requiring | 140 |
| abstract_inverted_index.selection | 103 |
| abstract_inverted_index.settings, | 186 |
| abstract_inverted_index.structure | 96 |
| abstract_inverted_index.two-phase | 50 |
| abstract_inverted_index.CausalPlan | 67, 133, 148, 173 |
| abstract_inverted_index.Llama-70B. | 168 |
| abstract_inverted_index.Structural | 70 |
| abstract_inverted_index.baselines. | 191 |
| abstract_inverted_index.behaviours | 138 |
| abstract_inverted_index.constrains | 134 |
| abstract_inverted_index.decisions. | 94 |
| abstract_inverted_index.efficient, | 202 |
| abstract_inverted_index.incoherent | 12 |
| abstract_inverted_index.integrates | 53 |
| abstract_inverted_index.limitation | 30 |
| abstract_inverted_index.proposals, | 110 |
| abstract_inverted_index.reasoning. | 28 |
| abstract_inverted_index.structural | 55 |
| abstract_inverted_index.undermines | 31 |
| abstract_inverted_index.CausalPlan, | 48 |
| abstract_inverted_index.environment | 90 |
| abstract_inverted_index.fine-tuning | 141 |
| abstract_inverted_index.multi-agent | 155, 206 |
| abstract_inverted_index.open-source | 6 |
| abstract_inverted_index.performance | 33 |
| abstract_inverted_index.reweighting | 111 |
| abstract_inverted_index.Experimental | 169 |
| abstract_inverted_index.accordingly, | 113 |
| abstract_inverted_index.alternatives | 120 |
| abstract_inverted_index.consistently | 174 |
| abstract_inverted_index.coordination | 37, 156 |
| abstract_inverted_index.correlations | 23 |
| abstract_inverted_index.models-often | 7 |
| abstract_inverted_index.trajectories | 82 |
| abstract_inverted_index.LLM-generated | 109 |
| abstract_inverted_index.Overcooked-AI | 151 |
| abstract_inverted_index.collaboration | 180 |
| abstract_inverted_index.collaborative | 15 |
| abstract_inverted_index.environments. | 42 |
| abstract_inverted_index.generalisable | 205 |
| abstract_inverted_index.outperforming | 187 |
| abstract_inverted_index.reinforcement | 189 |
| abstract_inverted_index.surface-level | 22 |
| abstract_inverted_index.interpretable, | 203 |
| abstract_inverted_index.causality-driven | 198 |
| abstract_inverted_index.agents-especially | 4 |
| abstract_inverted_index.intervention-consistent | 137 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.20232231 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |