CellViT: Vision Transformers for precise cell segmentation and classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.media.2024.103143
Nuclei detection and segmentation in hematoxylin and eosin-stained (H&E) tissue images are important clinical tasks and crucial for a wide range of applications. However, it is a challenging task due to nuclei variances in staining and size, overlapping boundaries, and nuclei clustering. While convolutional neural networks have been extensively used for this task, we explore the potential of Transformer-based networks in combination with large scale pre-training in this domain. Therefore, we introduce a new method for automated instance segmentation of cell nuclei in digitized tissue samples using a deep learning architecture based on Vision Transformer called CellViT. CellViT is trained and evaluated on the PanNuke dataset, which is one of the most challenging nuclei instance segmentation datasets, consisting of nearly 200,000 annotated nuclei into 5 clinically important classes in 19 tissue types. We demonstrate the superiority of large-scale in-domain and out-of-domain pre-trained Vision Transformers by leveraging the recently published Segment Anything Model and a ViT-encoder pre-trained on 104 million histological image patches - achieving state-of-the-art nuclei detection and instance segmentation performance on the PanNuke dataset with a mean panoptic quality of 0.50 and an F1-detection score of 0.83. The code is publicly available at https://github.com/TIO-IKIM/CellViT.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.media.2024.103143
- OA Status
- hybrid
- Cited By
- 172
- References
- 85
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392883923
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392883923Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.media.2024.103143Digital Object Identifier
- Title
-
CellViT: Vision Transformers for precise cell segmentation and classificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-16Full publication date if available
- Authors
-
Fabian Hörst, Moritz Rempe, Lukas Heine, Constantin Seibold, Julius Keyl, Giulia Baldini, Selma Ugurel, Jens T. Siveke, Barbara T. Grünwald, Jan Egger, Jens KleesiekList of authors in order
- Landing page
-
https://doi.org/10.1016/j.media.2024.103143Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.media.2024.103143Direct OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Convolutional neural network, Deep learning, Encoder, Pattern recognition (psychology), Cluster analysis, Computer vision, Scale-space segmentation, Image segmentation, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
172Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 125, 2024: 44, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
85Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392883923 |
|---|---|
| doi | https://doi.org/10.1016/j.media.2024.103143 |
| ids.doi | https://doi.org/10.1016/j.media.2024.103143 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38507894 |
| ids.openalex | https://openalex.org/W4392883923 |
| fwci | 107.9535748 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D002467 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Cell Nucleus |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D004801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Eosine Yellowish-(YS) |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006416 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Hematoxylin |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016571 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Neural Networks, Computer |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D013194 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Staining and Labeling |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D007091 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Image Processing, Computer-Assisted |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D002467 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Cell Nucleus |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D004801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Eosine Yellowish-(YS) |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006416 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Hematoxylin |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D013194 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Staining and Labeling |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D007091 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Image Processing, Computer-Assisted |
| type | article |
| title | CellViT: Vision Transformers for precise cell segmentation and classification |
| biblio.issue | |
| biblio.volume | 94 |
| biblio.last_page | 103143 |
| biblio.first_page | 103143 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12874 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Digital Imaging for Blood Diseases |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9922000169754028 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| funders[0].id | https://openalex.org/F4320325052 |
| funders[0].ror | https://ror.org/04mz5ra38 |
| funders[0].display_name | Universität Duisburg-Essen |
| is_xpac | False |
| apc_list.value | 3970 |
| apc_list.currency | USD |
| apc_list.value_usd | 3970 |
| apc_paid.value | 3970 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3970 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7737128734588623 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7676920890808105 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7554631233215332 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6416995525360107 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.582383394241333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C118505674 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5658868551254272 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[5].display_name | Encoder |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5298956036567688 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C73555534 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47646665573120117 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[7].display_name | Cluster analysis |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4348224401473999 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C65885262 |
| concepts[9].level | 4 |
| concepts[9].score | 0.41746675968170166 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7429708 |
| concepts[9].display_name | Scale-space segmentation |
| concepts[10].id | https://openalex.org/C124504099 |
| concepts[10].level | 3 |
| concepts[10].score | 0.40046563744544983 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[10].display_name | Image segmentation |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7737128734588623 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7676920890808105 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7554631233215332 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6416995525360107 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.582383394241333 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/encoder |
| keywords[5].score | 0.5658868551254272 |
| keywords[5].display_name | Encoder |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5298956036567688 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/cluster-analysis |
| keywords[7].score | 0.47646665573120117 |
| keywords[7].display_name | Cluster analysis |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4348224401473999 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/scale-space-segmentation |
| keywords[9].score | 0.41746675968170166 |
| keywords[9].display_name | Scale-space segmentation |
| keywords[10].id | https://openalex.org/keywords/image-segmentation |
| keywords[10].score | 0.40046563744544983 |
| keywords[10].display_name | Image segmentation |
| language | en |
| locations[0].id | doi:10.1016/j.media.2024.103143 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S116571295 |
| locations[0].source.issn | 1361-8415, 1361-8423, 1361-8431 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1361-8415 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Medical Image Analysis |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medical Image Analysis |
| locations[0].landing_page_url | https://doi.org/10.1016/j.media.2024.103143 |
| locations[1].id | pmid:38507894 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Medical image analysis |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38507894 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5017950391 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8906-7644 |
| authorships[0].author.display_name | Fabian Hörst |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[0].affiliations[0].raw_affiliation_string | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[0].affiliations[1].raw_affiliation_string | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[0].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Essen University Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fabian Hörst |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany, Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[1].author.id | https://openalex.org/A5044751005 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7137-2624 |
| authorships[1].author.display_name | Moritz Rempe |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210119759 |
| authorships[1].affiliations[1].raw_affiliation_string | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[1].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Essen University Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Moritz Rempe |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany, Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[2].author.id | https://openalex.org/A5092355592 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-3405-0556 |
| authorships[2].author.display_name | Lukas Heine |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[2].affiliations[0].raw_affiliation_string | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[2].affiliations[1].raw_affiliation_string | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[2].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Essen University Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lukas Heine |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany, Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[3].author.id | https://openalex.org/A5084474018 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6042-8437 |
| authorships[3].author.display_name | Constantin Seibold |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210119759 |
| authorships[3].affiliations[1].raw_affiliation_string | Clinic for Nuclear Medicine, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[3].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Essen University Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Constantin Seibold |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Clinic for Nuclear Medicine, University Hospital Essen (AöR), 45147 Essen, Germany, Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[4].author.id | https://openalex.org/A5082541566 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5617-091X |
| authorships[4].author.display_name | Julius Keyl |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Pathology, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[4].affiliations[1].raw_affiliation_string | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[4].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Essen University Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Julius Keyl |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany, Institute of Pathology, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[5].author.id | https://openalex.org/A5067463049 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5929-0271 |
| authorships[5].author.display_name | Giulia Baldini |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[5].affiliations[1].raw_affiliation_string | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[5].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Essen University Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Giulia Baldini |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany, Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[6].author.id | https://openalex.org/A5057381405 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9384-6704 |
| authorships[6].author.display_name | Selma Ugurel |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I17937529, https://openalex.org/I4391767962 |
| authorships[6].affiliations[0].raw_affiliation_string | German Cancer Consortium (DKTK, Partner site Essen), 69120 Heidelberg, Germany |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210119759 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Dermatology, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I4391767962 |
| authorships[6].institutions[0].ror | https://ror.org/02pqn3g31 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4391767962, https://openalex.org/I4411590659 |
| authorships[6].institutions[0].country_code | |
| authorships[6].institutions[0].display_name | Deutschen Konsortium für Translationale Krebsforschung |
| authorships[6].institutions[1].id | https://openalex.org/I4210119759 |
| authorships[6].institutions[1].ror | https://ror.org/02na8dn90 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210119759 |
| authorships[6].institutions[1].country_code | DE |
| authorships[6].institutions[1].display_name | Essen University Hospital |
| authorships[6].institutions[2].id | https://openalex.org/I17937529 |
| authorships[6].institutions[2].ror | https://ror.org/04cdgtt98 |
| authorships[6].institutions[2].type | facility |
| authorships[6].institutions[2].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[6].institutions[2].country_code | DE |
| authorships[6].institutions[2].display_name | German Cancer Research Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Selma Ugurel |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Dermatology, University Hospital Essen (AöR), 45147 Essen, Germany, German Cancer Consortium (DKTK, Partner site Essen), 69120 Heidelberg, Germany |
| authorships[7].author.id | https://openalex.org/A5071888326 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8772-4778 |
| authorships[7].author.display_name | Jens T. Siveke |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I17937529, https://openalex.org/I223822909 |
| authorships[7].affiliations[0].raw_affiliation_string | Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner site Essen) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210119759 |
| authorships[7].affiliations[1].raw_affiliation_string | West German Cancer Center, Department of Medical Oncology, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I4210119759 |
| authorships[7].affiliations[2].raw_affiliation_string | Bridge Institute of Experimental Tumor Therapy, West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[7].affiliations[3].institution_ids | https://openalex.org/I62318514 |
| authorships[7].affiliations[3].raw_affiliation_string | Medical Faculty, University Duisburg–Essen, 45147 Essen, Germany |
| authorships[7].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[7].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | Essen University Hospital |
| authorships[7].institutions[1].id | https://openalex.org/I17937529 |
| authorships[7].institutions[1].ror | https://ror.org/04cdgtt98 |
| authorships[7].institutions[1].type | facility |
| authorships[7].institutions[1].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[7].institutions[1].country_code | DE |
| authorships[7].institutions[1].display_name | German Cancer Research Center |
| authorships[7].institutions[2].id | https://openalex.org/I223822909 |
| authorships[7].institutions[2].ror | https://ror.org/038t36y30 |
| authorships[7].institutions[2].type | education |
| authorships[7].institutions[2].lineage | https://openalex.org/I223822909 |
| authorships[7].institutions[2].country_code | DE |
| authorships[7].institutions[2].display_name | Heidelberg University |
| authorships[7].institutions[3].id | https://openalex.org/I62318514 |
| authorships[7].institutions[3].ror | https://ror.org/04mz5ra38 |
| authorships[7].institutions[3].type | education |
| authorships[7].institutions[3].lineage | https://openalex.org/I62318514 |
| authorships[7].institutions[3].country_code | DE |
| authorships[7].institutions[3].display_name | University of Duisburg-Essen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jens Siveke |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Bridge Institute of Experimental Tumor Therapy, West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany, Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner site Essen) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany, Medical Faculty, University Duisburg–Essen, 45147 Essen, Germany, West German Cancer Center, Department of Medical Oncology, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[8].author.id | https://openalex.org/A5047728701 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-7541-5206 |
| authorships[8].author.display_name | Barbara T. Grünwald |
| authorships[8].countries | CA, DE |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210161917 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Urology, West German Cancer Center, 45147 University Hospital Essen (AöR), Germany |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I2802654988 |
| authorships[8].affiliations[1].raw_affiliation_string | Princess Margaret Cancer Centre, M5G 2M9 Toronto, Ontario, Canada |
| authorships[8].institutions[0].id | https://openalex.org/I2802654988 |
| authorships[8].institutions[0].ror | https://ror.org/03zayce58 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I1325899441, https://openalex.org/I2802654988 |
| authorships[8].institutions[0].country_code | CA |
| authorships[8].institutions[0].display_name | Princess Margaret Cancer Centre |
| authorships[8].institutions[1].id | https://openalex.org/I4210161917 |
| authorships[8].institutions[1].ror | https://ror.org/05aw6p704 |
| authorships[8].institutions[1].type | healthcare |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210119759, https://openalex.org/I4210161917 |
| authorships[8].institutions[1].country_code | DE |
| authorships[8].institutions[1].display_name | West German Heart and Vascular Center Essen |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Barbara Grünwald |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Urology, West German Cancer Center, 45147 University Hospital Essen (AöR), Germany, Princess Margaret Cancer Centre, M5G 2M9 Toronto, Ontario, Canada |
| authorships[9].author.id | https://openalex.org/A5010662766 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5225-1982 |
| authorships[9].author.display_name | Jan Egger |
| authorships[9].countries | DE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210119759 |
| authorships[9].affiliations[0].raw_affiliation_string | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[9].affiliations[1].raw_affiliation_string | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[9].institutions[0].id | https://openalex.org/I4210119759 |
| authorships[9].institutions[0].ror | https://ror.org/02na8dn90 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210119759 |
| authorships[9].institutions[0].country_code | DE |
| authorships[9].institutions[0].display_name | Essen University Hospital |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Jan Egger |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany, Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[10].author.id | https://openalex.org/A5017161970 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-8686-0682 |
| authorships[10].author.display_name | Jens Kleesiek |
| authorships[10].countries | DE |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I17937529, https://openalex.org/I4391767962 |
| authorships[10].affiliations[0].raw_affiliation_string | German Cancer Consortium (DKTK, Partner site Essen), 69120 Heidelberg, Germany |
| authorships[10].affiliations[1].raw_affiliation_string | Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| authorships[10].affiliations[2].institution_ids | https://openalex.org/I200332995 |
| authorships[10].affiliations[2].raw_affiliation_string | Department of Physics, TU Dortmund University, 44227 Dortmund, Germany |
| authorships[10].affiliations[3].institution_ids | https://openalex.org/I4210119759 |
| authorships[10].affiliations[3].raw_affiliation_string | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany |
| authorships[10].institutions[0].id | https://openalex.org/I4391767962 |
| authorships[10].institutions[0].ror | https://ror.org/02pqn3g31 |
| authorships[10].institutions[0].type | facility |
| authorships[10].institutions[0].lineage | https://openalex.org/I4391767962, https://openalex.org/I4411590659 |
| authorships[10].institutions[0].country_code | |
| authorships[10].institutions[0].display_name | Deutschen Konsortium für Translationale Krebsforschung |
| authorships[10].institutions[1].id | https://openalex.org/I4210119759 |
| authorships[10].institutions[1].ror | https://ror.org/02na8dn90 |
| authorships[10].institutions[1].type | healthcare |
| authorships[10].institutions[1].lineage | https://openalex.org/I4210119759 |
| authorships[10].institutions[1].country_code | DE |
| authorships[10].institutions[1].display_name | Essen University Hospital |
| authorships[10].institutions[2].id | https://openalex.org/I17937529 |
| authorships[10].institutions[2].ror | https://ror.org/04cdgtt98 |
| authorships[10].institutions[2].type | facility |
| authorships[10].institutions[2].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[10].institutions[2].country_code | DE |
| authorships[10].institutions[2].display_name | German Cancer Research Center |
| authorships[10].institutions[3].id | https://openalex.org/I200332995 |
| authorships[10].institutions[3].ror | https://ror.org/01k97gp34 |
| authorships[10].institutions[3].type | education |
| authorships[10].institutions[3].lineage | https://openalex.org/I200332995 |
| authorships[10].institutions[3].country_code | DE |
| authorships[10].institutions[3].display_name | TU Dortmund University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Jens Kleesiek |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), 45147 Essen, Germany, Department of Physics, TU Dortmund University, 44227 Dortmund, Germany, German Cancer Consortium (DKTK, Partner site Essen), 69120 Heidelberg, Germany, Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), 45131 Essen, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.media.2024.103143 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CellViT: Vision Transformers for precise cell segmentation and classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W3167935049, https://openalex.org/W3029198973, https://openalex.org/W2185902295, https://openalex.org/W2103507220 |
| cited_by_count | 172 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 125 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 44 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.media.2024.103143 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S116571295 |
| best_oa_location.source.issn | 1361-8415, 1361-8423, 1361-8431 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1361-8415 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Medical Image Analysis |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Medical Image Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.media.2024.103143 |
| primary_location.id | doi:10.1016/j.media.2024.103143 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S116571295 |
| primary_location.source.issn | 1361-8415, 1361-8423, 1361-8431 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1361-8415 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Medical Image Analysis |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medical Image Analysis |
| primary_location.landing_page_url | https://doi.org/10.1016/j.media.2024.103143 |
| publication_date | 2024-03-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6755165833, https://openalex.org/W1968615915, https://openalex.org/W2952481429, https://openalex.org/W2889985731, https://openalex.org/W2956228567, https://openalex.org/W6779997284, https://openalex.org/W6794655914, https://openalex.org/W6848565453, https://openalex.org/W3132111858, https://openalex.org/W6786614245, https://openalex.org/W6774314701, https://openalex.org/W6703702014, https://openalex.org/W2120549843, https://openalex.org/W2618298410, https://openalex.org/W4376127444, https://openalex.org/W2905810301, https://openalex.org/W6631782140, https://openalex.org/W4309477120, https://openalex.org/W2974825848, https://openalex.org/W2959497269, https://openalex.org/W6779326418, https://openalex.org/W3206996158, https://openalex.org/W6810465815, https://openalex.org/W6791637211, https://openalex.org/W6770717842, https://openalex.org/W2963150697, https://openalex.org/W2194775991, https://openalex.org/W4385450278, https://openalex.org/W4221099717, https://openalex.org/W3014974815, https://openalex.org/W4223974852, https://openalex.org/W6750297457, https://openalex.org/W2980112230, https://openalex.org/W6675115844, https://openalex.org/W2981994674, https://openalex.org/W2592905743, https://openalex.org/W2919115771, https://openalex.org/W1125523343, https://openalex.org/W6730903564, https://openalex.org/W6742348326, https://openalex.org/W3135547872, https://openalex.org/W2054821087, https://openalex.org/W6772750526, https://openalex.org/W2994872614, https://openalex.org/W2885343725, https://openalex.org/W6800217721, https://openalex.org/W2798643036, https://openalex.org/W1901129140, https://openalex.org/W6785136195, https://openalex.org/W3096947210, https://openalex.org/W2312404985, https://openalex.org/W2889739347, https://openalex.org/W2512138407, https://openalex.org/W2521963431, https://openalex.org/W2789926374, https://openalex.org/W4293276539, https://openalex.org/W6739901393, https://openalex.org/W1970120446, https://openalex.org/W3003257820, https://openalex.org/W6809679946, https://openalex.org/W2043034051, https://openalex.org/W6797399245, https://openalex.org/W2151538727, https://openalex.org/W6803497561, https://openalex.org/W6788620109, https://openalex.org/W3187378100, https://openalex.org/W3099319035, https://openalex.org/W4301409532, https://openalex.org/W4286849947, https://openalex.org/W4288860568, https://openalex.org/W4385245566, https://openalex.org/W3013627541, https://openalex.org/W4300596855, https://openalex.org/W3036224891, https://openalex.org/W3211490618, https://openalex.org/W4287022992, https://openalex.org/W3112701542, https://openalex.org/W3195577433, https://openalex.org/W4285505698, https://openalex.org/W3035060554, https://openalex.org/W3132455321, https://openalex.org/W3092232537, https://openalex.org/W2623902889, https://openalex.org/W3094502228, https://openalex.org/W4249142012 |
| referenced_works_count | 85 |
| abstract_inverted_index.- | 162 |
| abstract_inverted_index.5 | 124 |
| abstract_inverted_index.a | 18, 26, 72, 87, 153, 176 |
| abstract_inverted_index.19 | 129 |
| abstract_inverted_index.We | 132 |
| abstract_inverted_index.an | 183 |
| abstract_inverted_index.at | 193 |
| abstract_inverted_index.by | 144 |
| abstract_inverted_index.in | 4, 33, 60, 66, 82, 128 |
| abstract_inverted_index.is | 25, 98, 107, 190 |
| abstract_inverted_index.it | 24 |
| abstract_inverted_index.of | 21, 57, 79, 109, 118, 136, 180, 186 |
| abstract_inverted_index.on | 92, 102, 156, 171 |
| abstract_inverted_index.to | 30 |
| abstract_inverted_index.we | 53, 70 |
| abstract_inverted_index.104 | 157 |
| abstract_inverted_index.The | 188 |
| abstract_inverted_index.and | 2, 6, 15, 35, 39, 100, 139, 152, 167, 182 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.due | 29 |
| abstract_inverted_index.for | 17, 50, 75 |
| abstract_inverted_index.new | 73 |
| abstract_inverted_index.one | 108 |
| abstract_inverted_index.the | 55, 103, 110, 134, 146, 172 |
| abstract_inverted_index.0.50 | 181 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.cell | 80 |
| abstract_inverted_index.code | 189 |
| abstract_inverted_index.deep | 88 |
| abstract_inverted_index.have | 46 |
| abstract_inverted_index.into | 123 |
| abstract_inverted_index.mean | 177 |
| abstract_inverted_index.most | 111 |
| abstract_inverted_index.task | 28 |
| abstract_inverted_index.this | 51, 67 |
| abstract_inverted_index.used | 49 |
| abstract_inverted_index.wide | 19 |
| abstract_inverted_index.with | 62, 175 |
| abstract_inverted_index.(H&E) | 8 |
| abstract_inverted_index.0.83. | 187 |
| abstract_inverted_index.Model | 151 |
| abstract_inverted_index.While | 42 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.image | 160 |
| abstract_inverted_index.large | 63 |
| abstract_inverted_index.range | 20 |
| abstract_inverted_index.scale | 64 |
| abstract_inverted_index.score | 185 |
| abstract_inverted_index.size, | 36 |
| abstract_inverted_index.task, | 52 |
| abstract_inverted_index.tasks | 14 |
| abstract_inverted_index.using | 86 |
| abstract_inverted_index.which | 106 |
| abstract_inverted_index.Nuclei | 0 |
| abstract_inverted_index.Vision | 93, 142 |
| abstract_inverted_index.called | 95 |
| abstract_inverted_index.images | 10 |
| abstract_inverted_index.method | 74 |
| abstract_inverted_index.nearly | 119 |
| abstract_inverted_index.neural | 44 |
| abstract_inverted_index.nuclei | 31, 40, 81, 113, 122, 165 |
| abstract_inverted_index.tissue | 9, 84, 130 |
| abstract_inverted_index.types. | 131 |
| abstract_inverted_index.200,000 | 120 |
| abstract_inverted_index.CellViT | 97 |
| abstract_inverted_index.PanNuke | 104, 173 |
| abstract_inverted_index.Segment | 149 |
| abstract_inverted_index.classes | 127 |
| abstract_inverted_index.crucial | 16 |
| abstract_inverted_index.dataset | 174 |
| abstract_inverted_index.domain. | 68 |
| abstract_inverted_index.explore | 54 |
| abstract_inverted_index.million | 158 |
| abstract_inverted_index.patches | 161 |
| abstract_inverted_index.quality | 179 |
| abstract_inverted_index.samples | 85 |
| abstract_inverted_index.trained | 99 |
| abstract_inverted_index.Anything | 150 |
| abstract_inverted_index.CellViT. | 96 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.clinical | 13 |
| abstract_inverted_index.dataset, | 105 |
| abstract_inverted_index.instance | 77, 114, 168 |
| abstract_inverted_index.learning | 89 |
| abstract_inverted_index.networks | 45, 59 |
| abstract_inverted_index.panoptic | 178 |
| abstract_inverted_index.publicly | 191 |
| abstract_inverted_index.recently | 147 |
| abstract_inverted_index.staining | 34 |
| abstract_inverted_index.achieving | 163 |
| abstract_inverted_index.annotated | 121 |
| abstract_inverted_index.automated | 76 |
| abstract_inverted_index.available | 192 |
| abstract_inverted_index.datasets, | 116 |
| abstract_inverted_index.detection | 1, 166 |
| abstract_inverted_index.digitized | 83 |
| abstract_inverted_index.evaluated | 101 |
| abstract_inverted_index.important | 12, 126 |
| abstract_inverted_index.in-domain | 138 |
| abstract_inverted_index.introduce | 71 |
| abstract_inverted_index.potential | 56 |
| abstract_inverted_index.published | 148 |
| abstract_inverted_index.variances | 32 |
| abstract_inverted_index.Therefore, | 69 |
| abstract_inverted_index.clinically | 125 |
| abstract_inverted_index.consisting | 117 |
| abstract_inverted_index.leveraging | 145 |
| abstract_inverted_index.Transformer | 94 |
| abstract_inverted_index.ViT-encoder | 154 |
| abstract_inverted_index.boundaries, | 38 |
| abstract_inverted_index.challenging | 27, 112 |
| abstract_inverted_index.clustering. | 41 |
| abstract_inverted_index.combination | 61 |
| abstract_inverted_index.demonstrate | 133 |
| abstract_inverted_index.extensively | 48 |
| abstract_inverted_index.hematoxylin | 5 |
| abstract_inverted_index.large-scale | 137 |
| abstract_inverted_index.overlapping | 37 |
| abstract_inverted_index.performance | 170 |
| abstract_inverted_index.pre-trained | 141, 155 |
| abstract_inverted_index.superiority | 135 |
| abstract_inverted_index.Transformers | 143 |
| abstract_inverted_index.architecture | 90 |
| abstract_inverted_index.histological | 159 |
| abstract_inverted_index.pre-training | 65 |
| abstract_inverted_index.segmentation | 3, 78, 115, 169 |
| abstract_inverted_index.applications. | 22 |
| abstract_inverted_index.convolutional | 43 |
| abstract_inverted_index.eosin-stained | 7 |
| abstract_inverted_index.out-of-domain | 140 |
| abstract_inverted_index.state-of-the-art | 164 |
| abstract_inverted_index.Transformer-based | 58 |
| abstract_inverted_index.F<sub>1</sub>-detection | 184 |
| abstract_inverted_index.https://github.com/TIO-IKIM/CellViT. | 194 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5017950391 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I4210119759 |
| citation_normalized_percentile.value | 0.99954102 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |