Censored Least Squares for Imputing Missing Values in PARAFAC Tensor Factorization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.07.05.602272
Tensor factorization is a dimensionality reduction method applied to multidimensional arrays. These methods are useful for identifying patterns within a variety of biomedical datasets due to their ability to preserve the organizational structure of experiments and therefore aid in generating meaningful insights. However, missing data in the datasets being analyzed can impose challenges. Tensor factorization can be performed with some level of missing data and reconstruct a complete tensor. However, while tensor methods may impute these missing values, the choice of fitting algorithm may influence the fidelity of these imputations. Previous approaches, based on alternating least squares with prefilled values or direct optimization, suffer from introduced bias or slow computational performance. In this study, we propose that censored least squares can better handle missing values with data structured in tensor form. We ran censored least squares on four different biological datasets and compared its performance against alternating least squares with prefilled values and direct optimization. We used the error of imputation and the ability to infer masked values to benchmark their missing data performance. Censored least squares appeared best suited for the analysis of high-dimensional biological data by accuracy and convergence metrics across several studies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.07.05.602272
- OA Status
- green
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400490994
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400490994Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.07.05.602272Digital Object Identifier
- Title
-
Censored Least Squares for Imputing Missing Values in PARAFAC Tensor FactorizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-10Full publication date if available
- Authors
-
E. Hung, Enio Hodzic, Zhixin Cyrillus Tan, Aaron S. MeyerList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.07.05.602272Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11257416Direct OA link when available
- Concepts
-
Missing data, Imputation (statistics), Computer science, Dimensionality reduction, Least-squares function approximation, Benchmark (surveying), Data mining, Multilinear map, Factorization, Tensor (intrinsic definition), Algorithm, Generalized least squares, Statistics, Mathematics, Artificial intelligence, Pattern recognition (psychology), Machine learning, Geography, Geodesy, Pure mathematics, EstimatorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400490994 |
|---|---|
| doi | https://doi.org/10.1101/2024.07.05.602272 |
| ids.doi | https://doi.org/10.1101/2024.07.05.602272 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39026852 |
| ids.openalex | https://openalex.org/W4400490994 |
| fwci | 0.0 |
| type | preprint |
| title | Censored Least Squares for Imputing Missing Values in PARAFAC Tensor Factorization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12303 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2605 |
| topics[0].subfield.display_name | Computational Mathematics |
| topics[0].display_name | Tensor decomposition and applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C9357733 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8448459506034851 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[0].display_name | Missing data |
| concepts[1].id | https://openalex.org/C58041806 |
| concepts[1].level | 3 |
| concepts[1].score | 0.707457959651947 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[1].display_name | Imputation (statistics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5633941292762756 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C70518039 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5387822389602661 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[3].display_name | Dimensionality reduction |
| concepts[4].id | https://openalex.org/C9936470 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5227525234222412 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6510405 |
| concepts[4].display_name | Least-squares function approximation |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48905786871910095 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48149049282073975 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C84392682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47848600149154663 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1952404 |
| concepts[7].display_name | Multilinear map |
| concepts[8].id | https://openalex.org/C187834632 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4732147753238678 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188804 |
| concepts[8].display_name | Factorization |
| concepts[9].id | https://openalex.org/C155281189 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4719661474227905 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3518150 |
| concepts[9].display_name | Tensor (intrinsic definition) |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4313563406467438 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C188649462 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4129991829395294 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2246261 |
| concepts[11].display_name | Generalized least squares |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3758644163608551 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.35132086277008057 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.32742631435394287 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C153180895 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3273133635520935 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[15].display_name | Pattern recognition (psychology) |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.25602787733078003 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C13280743 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[18].display_name | Geodesy |
| concepts[19].id | https://openalex.org/C202444582 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[19].display_name | Pure mathematics |
| concepts[20].id | https://openalex.org/C185429906 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[20].display_name | Estimator |
| keywords[0].id | https://openalex.org/keywords/missing-data |
| keywords[0].score | 0.8448459506034851 |
| keywords[0].display_name | Missing data |
| keywords[1].id | https://openalex.org/keywords/imputation |
| keywords[1].score | 0.707457959651947 |
| keywords[1].display_name | Imputation (statistics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5633941292762756 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[3].score | 0.5387822389602661 |
| keywords[3].display_name | Dimensionality reduction |
| keywords[4].id | https://openalex.org/keywords/least-squares-function-approximation |
| keywords[4].score | 0.5227525234222412 |
| keywords[4].display_name | Least-squares function approximation |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.48905786871910095 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.48149049282073975 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/multilinear-map |
| keywords[7].score | 0.47848600149154663 |
| keywords[7].display_name | Multilinear map |
| keywords[8].id | https://openalex.org/keywords/factorization |
| keywords[8].score | 0.4732147753238678 |
| keywords[8].display_name | Factorization |
| keywords[9].id | https://openalex.org/keywords/tensor |
| keywords[9].score | 0.4719661474227905 |
| keywords[9].display_name | Tensor (intrinsic definition) |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.4313563406467438 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/generalized-least-squares |
| keywords[11].score | 0.4129991829395294 |
| keywords[11].display_name | Generalized least squares |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.3758644163608551 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.35132086277008057 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.32742631435394287 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/pattern-recognition |
| keywords[15].score | 0.3273133635520935 |
| keywords[15].display_name | Pattern recognition (psychology) |
| keywords[16].id | https://openalex.org/keywords/machine-learning |
| keywords[16].score | 0.25602787733078003 |
| keywords[16].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1101/2024.07.05.602272 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.07.05.602272 |
| locations[1].id | pmid:39026852 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | bioRxiv : the preprint server for biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39026852 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11257416 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | bioRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11257416 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5048840953 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-6306-9263 |
| authorships[0].author.display_name | E. Hung |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[0].affiliations[0].raw_affiliation_string | Computational and Systems Biology, University of California, Los Angeles (UCLA), USA. |
| authorships[0].institutions[0].id | https://openalex.org/I161318765 |
| authorships[0].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Los Angeles |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ethan C Hung |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computational and Systems Biology, University of California, Los Angeles (UCLA), USA. |
| authorships[1].author.id | https://openalex.org/A5104576450 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Enio Hodzic |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210133661 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Bioengineering, UCLA, USA. |
| authorships[1].institutions[0].id | https://openalex.org/I4210133661 |
| authorships[1].institutions[0].ror | https://ror.org/03sgbh608 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210133661 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | La Jolla Bioengineering Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Enio Hodzic |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Bioengineering, UCLA, USA. |
| authorships[2].author.id | https://openalex.org/A5004947772 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5498-5509 |
| authorships[2].author.display_name | Zhixin Cyrillus Tan |
| authorships[2].affiliations[0].raw_affiliation_string | Bioinformatics Interdepartmental Program, UCLA, USA. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhixin Cyrillus Tan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Bioinformatics Interdepartmental Program, UCLA, USA. |
| authorships[3].author.id | https://openalex.org/A5010476642 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4513-1840 |
| authorships[3].author.display_name | Aaron S. Meyer |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210150380 |
| authorships[3].affiliations[0].raw_affiliation_string | Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, USA. |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210134151, https://openalex.org/I4390039293, https://openalex.org/I921990950 |
| authorships[3].affiliations[1].raw_affiliation_string | Jonsson Comprehensive Cancer Center, UCLA, USA. |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210133661 |
| authorships[3].affiliations[2].raw_affiliation_string | Department of Bioengineering, UCLA, USA. |
| authorships[3].institutions[0].id | https://openalex.org/I4390039293 |
| authorships[3].institutions[0].ror | https://ror.org/0599cs764 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799798094, https://openalex.org/I4390039293 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | UCLA Jonsson Comprehensive Cancer Center |
| authorships[3].institutions[1].id | https://openalex.org/I4210150380 |
| authorships[3].institutions[1].ror | https://ror.org/04tbrah05 |
| authorships[3].institutions[1].type | nonprofit |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210150380 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Broad Center |
| authorships[3].institutions[2].id | https://openalex.org/I4210133661 |
| authorships[3].institutions[2].ror | https://ror.org/03sgbh608 |
| authorships[3].institutions[2].type | nonprofit |
| authorships[3].institutions[2].lineage | https://openalex.org/I4210133661 |
| authorships[3].institutions[2].country_code | US |
| authorships[3].institutions[2].display_name | La Jolla Bioengineering Institute |
| authorships[3].institutions[3].id | https://openalex.org/I4210134151 |
| authorships[3].institutions[3].ror | https://ror.org/04cqn7d42 |
| authorships[3].institutions[3].type | healthcare |
| authorships[3].institutions[3].lineage | https://openalex.org/I4210134151 |
| authorships[3].institutions[3].country_code | US |
| authorships[3].institutions[3].display_name | University of Colorado Cancer Center |
| authorships[3].institutions[4].id | https://openalex.org/I921990950 |
| authorships[3].institutions[4].ror | https://ror.org/02hh7en24 |
| authorships[3].institutions[4].type | education |
| authorships[3].institutions[4].lineage | https://openalex.org/I921990950 |
| authorships[3].institutions[4].country_code | US |
| authorships[3].institutions[4].display_name | University of Colorado Denver |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aaron S Meyer |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Bioengineering, UCLA, USA., Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, USA., Jonsson Comprehensive Cancer Center, UCLA, USA. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11257416 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Censored Least Squares for Imputing Missing Values in PARAFAC Tensor Factorization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12303 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2605 |
| primary_topic.subfield.display_name | Computational Mathematics |
| primary_topic.display_name | Tensor decomposition and applications |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W2055961818, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W3028371478, https://openalex.org/W2081476516, https://openalex.org/W2581984549 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11257416 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | bioRxiv |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11257416 |
| primary_location.id | doi:10.1101/2024.07.05.602272 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.07.05.602272 |
| publication_date | 2024-07-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2148541040, https://openalex.org/W2170798597, https://openalex.org/W4392222933, https://openalex.org/W2024165284, https://openalex.org/W2996663445, https://openalex.org/W2482092413, https://openalex.org/W3198746895, https://openalex.org/W4313429430, https://openalex.org/W4361301332, https://openalex.org/W1977098485, https://openalex.org/W2168470985, https://openalex.org/W2121536973, https://openalex.org/W2009432182, https://openalex.org/W1982142851, https://openalex.org/W3100788068, https://openalex.org/W4327795832, https://openalex.org/W2950245999, https://openalex.org/W3089871235, https://openalex.org/W4309933640, https://openalex.org/W2969522674, https://openalex.org/W2580957850, https://openalex.org/W4298385706, https://openalex.org/W2071729267, https://openalex.org/W1569285154, https://openalex.org/W2141280932, https://openalex.org/W2000215628, https://openalex.org/W2142486198, https://openalex.org/W2964106499, https://openalex.org/W3003257820, https://openalex.org/W2000359198, https://openalex.org/W2005126631, https://openalex.org/W3095217725, https://openalex.org/W2791890022, https://openalex.org/W4308995521, https://openalex.org/W4388282726, https://openalex.org/W3103145119, https://openalex.org/W4401822011, https://openalex.org/W4403294305 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 4, 20, 67 |
| abstract_inverted_index.In | 112 |
| abstract_inverted_index.We | 132, 156 |
| abstract_inverted_index.be | 57 |
| abstract_inverted_index.by | 188 |
| abstract_inverted_index.in | 39, 46, 129 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 22, 34, 62, 81, 88, 160, 184 |
| abstract_inverted_index.on | 94, 137 |
| abstract_inverted_index.or | 101, 108 |
| abstract_inverted_index.to | 9, 26, 29, 165, 169 |
| abstract_inverted_index.we | 115 |
| abstract_inverted_index.aid | 38 |
| abstract_inverted_index.and | 36, 65, 142, 153, 162, 190 |
| abstract_inverted_index.are | 14 |
| abstract_inverted_index.can | 51, 56, 121 |
| abstract_inverted_index.due | 25 |
| abstract_inverted_index.for | 16, 181 |
| abstract_inverted_index.its | 144 |
| abstract_inverted_index.may | 74, 84 |
| abstract_inverted_index.ran | 133 |
| abstract_inverted_index.the | 31, 47, 79, 86, 158, 163, 182 |
| abstract_inverted_index.best | 179 |
| abstract_inverted_index.bias | 107 |
| abstract_inverted_index.data | 45, 64, 127, 173, 187 |
| abstract_inverted_index.four | 138 |
| abstract_inverted_index.from | 105 |
| abstract_inverted_index.slow | 109 |
| abstract_inverted_index.some | 60 |
| abstract_inverted_index.that | 117 |
| abstract_inverted_index.this | 113 |
| abstract_inverted_index.used | 157 |
| abstract_inverted_index.with | 59, 98, 126, 150 |
| abstract_inverted_index.These | 12 |
| abstract_inverted_index.based | 93 |
| abstract_inverted_index.being | 49 |
| abstract_inverted_index.error | 159 |
| abstract_inverted_index.form. | 131 |
| abstract_inverted_index.infer | 166 |
| abstract_inverted_index.least | 96, 119, 135, 148, 176 |
| abstract_inverted_index.level | 61 |
| abstract_inverted_index.their | 27, 171 |
| abstract_inverted_index.these | 76, 89 |
| abstract_inverted_index.while | 71 |
| abstract_inverted_index.Tensor | 1, 54 |
| abstract_inverted_index.across | 193 |
| abstract_inverted_index.better | 122 |
| abstract_inverted_index.choice | 80 |
| abstract_inverted_index.direct | 102, 154 |
| abstract_inverted_index.handle | 123 |
| abstract_inverted_index.impose | 52 |
| abstract_inverted_index.impute | 75 |
| abstract_inverted_index.masked | 167 |
| abstract_inverted_index.method | 7 |
| abstract_inverted_index.study, | 114 |
| abstract_inverted_index.suffer | 104 |
| abstract_inverted_index.suited | 180 |
| abstract_inverted_index.tensor | 72, 130 |
| abstract_inverted_index.useful | 15 |
| abstract_inverted_index.values | 100, 125, 152, 168 |
| abstract_inverted_index.within | 19 |
| abstract_inverted_index.ability | 28, 164 |
| abstract_inverted_index.against | 146 |
| abstract_inverted_index.applied | 8 |
| abstract_inverted_index.arrays. | 11 |
| abstract_inverted_index.fitting | 82 |
| abstract_inverted_index.methods | 13, 73 |
| abstract_inverted_index.metrics | 192 |
| abstract_inverted_index.missing | 44, 63, 77, 124, 172 |
| abstract_inverted_index.propose | 116 |
| abstract_inverted_index.several | 194 |
| abstract_inverted_index.squares | 97, 120, 136, 149, 177 |
| abstract_inverted_index.tensor. | 69 |
| abstract_inverted_index.values, | 78 |
| abstract_inverted_index.variety | 21 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Censored | 175 |
| abstract_inverted_index.However, | 43, 70 |
| abstract_inverted_index.Previous | 91 |
| abstract_inverted_index.accuracy | 189 |
| abstract_inverted_index.analysis | 183 |
| abstract_inverted_index.analyzed | 50 |
| abstract_inverted_index.appeared | 178 |
| abstract_inverted_index.censored | 118, 134 |
| abstract_inverted_index.compared | 143 |
| abstract_inverted_index.complete | 68 |
| abstract_inverted_index.datasets | 24, 48, 141 |
| abstract_inverted_index.fidelity | 87 |
| abstract_inverted_index.patterns | 18 |
| abstract_inverted_index.preserve | 30 |
| abstract_inverted_index.studies. | 195 |
| abstract_inverted_index.algorithm | 83 |
| abstract_inverted_index.benchmark | 170 |
| abstract_inverted_index.different | 139 |
| abstract_inverted_index.influence | 85 |
| abstract_inverted_index.insights. | 42 |
| abstract_inverted_index.performed | 58 |
| abstract_inverted_index.prefilled | 99, 151 |
| abstract_inverted_index.reduction | 6 |
| abstract_inverted_index.structure | 33 |
| abstract_inverted_index.therefore | 37 |
| abstract_inverted_index.biological | 140, 186 |
| abstract_inverted_index.biomedical | 23 |
| abstract_inverted_index.generating | 40 |
| abstract_inverted_index.imputation | 161 |
| abstract_inverted_index.introduced | 106 |
| abstract_inverted_index.meaningful | 41 |
| abstract_inverted_index.structured | 128 |
| abstract_inverted_index.alternating | 95, 147 |
| abstract_inverted_index.approaches, | 92 |
| abstract_inverted_index.challenges. | 53 |
| abstract_inverted_index.convergence | 191 |
| abstract_inverted_index.experiments | 35 |
| abstract_inverted_index.identifying | 17 |
| abstract_inverted_index.performance | 145 |
| abstract_inverted_index.reconstruct | 66 |
| abstract_inverted_index.imputations. | 90 |
| abstract_inverted_index.performance. | 111, 174 |
| abstract_inverted_index.computational | 110 |
| abstract_inverted_index.factorization | 2, 55 |
| abstract_inverted_index.optimization, | 103 |
| abstract_inverted_index.optimization. | 155 |
| abstract_inverted_index.dimensionality | 5 |
| abstract_inverted_index.organizational | 32 |
| abstract_inverted_index.high-dimensional | 185 |
| abstract_inverted_index.multidimensional | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.14872364 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |