CenterNet: Object Detection with Keypoint Triplets Article Swipe
YOU?
·
· 2019
· Open Access
·
In object detection, keypoint-based approaches often suffer a large number of incorrect object bounding boxes, arguably due to the lack of an additional look into the cropped regions. This paper presents an efficient solution which explores the visual patterns within each cropped region with minimal costs. We build our framework upon a representative one-stage keypoint-based detector named CornerNet. Our approach, named CenterNet, detects each object as a triplet, rather than a pair, of keypoints, which improves both precision and recall. Accordingly, we design two customized modules named cascade corner pooling and center pooling, which play the roles of enriching information collected by both top-left and bottom-right corners and providing more recognizable information at the central regions, respectively. On the MS-COCO dataset, CenterNet achieves an AP of \textbf{47.0\%}, which outperforms all existing one-stage detectors by a large margin. Meanwhile, with a faster inference speed, CenterNet demonstrates quite comparable performance to the top-ranked two-stage detectors. Code is available at https://github.com/Duankaiwen/CenterNet.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://arxiv.org/pdf/1904.08189
- OA Status
- green
- Cited By
- 65
- References
- 35
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2938756873
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2938756873Canonical identifier for this work in OpenAlex
- Title
-
CenterNet: Object Detection with Keypoint TripletsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-04-17Full publication date if available
- Authors
-
Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, Qi TianList of authors in order
- Landing page
-
https://arxiv.org/pdf/1904.08189Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1904.08189Direct OA link when available
- Concepts
-
Pooling, Bounding overwatch, Computer science, Object (grammar), Detector, Inference, Code (set theory), Margin (machine learning), Object detection, Cascade, Artificial intelligence, Pattern recognition (psychology), Precision and recall, Machine learning, Engineering, Programming language, Set (abstract data type), Chemical engineering, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
65Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 3, 2022: 2, 2021: 19Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2938756873 |
|---|---|
| doi | |
| ids.mag | 2938756873 |
| ids.openalex | https://openalex.org/W2938756873 |
| fwci | 6.41314544 |
| type | article |
| title | CenterNet: Object Detection with Keypoint Triplets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C70437156 |
| concepts[0].level | 2 |
| concepts[0].score | 0.810633659362793 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[0].display_name | Pooling |
| concepts[1].id | https://openalex.org/C63584917 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7338836193084717 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q333286 |
| concepts[1].display_name | Bounding overwatch |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6821027994155884 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2781238097 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6680232286453247 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[3].display_name | Object (grammar) |
| concepts[4].id | https://openalex.org/C94915269 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6444611549377441 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[4].display_name | Detector |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6057771444320679 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C2776760102 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5964769721031189 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[6].display_name | Code (set theory) |
| concepts[7].id | https://openalex.org/C774472 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5878816246986389 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[7].display_name | Margin (machine learning) |
| concepts[8].id | https://openalex.org/C2776151529 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5667012929916382 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[8].display_name | Object detection |
| concepts[9].id | https://openalex.org/C34146451 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5653802752494812 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5048094 |
| concepts[9].display_name | Cascade |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.5257547497749329 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42936909198760986 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C81669768 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4138243496417999 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2359161 |
| concepts[12].display_name | Precision and recall |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14247897267341614 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07978647947311401 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07621598243713379 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C177264268 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[16].display_name | Set (abstract data type) |
| concepts[17].id | https://openalex.org/C42360764 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q83588 |
| concepts[17].display_name | Chemical engineering |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/pooling |
| keywords[0].score | 0.810633659362793 |
| keywords[0].display_name | Pooling |
| keywords[1].id | https://openalex.org/keywords/bounding-overwatch |
| keywords[1].score | 0.7338836193084717 |
| keywords[1].display_name | Bounding overwatch |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6821027994155884 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/object |
| keywords[3].score | 0.6680232286453247 |
| keywords[3].display_name | Object (grammar) |
| keywords[4].id | https://openalex.org/keywords/detector |
| keywords[4].score | 0.6444611549377441 |
| keywords[4].display_name | Detector |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.6057771444320679 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/code |
| keywords[6].score | 0.5964769721031189 |
| keywords[6].display_name | Code (set theory) |
| keywords[7].id | https://openalex.org/keywords/margin |
| keywords[7].score | 0.5878816246986389 |
| keywords[7].display_name | Margin (machine learning) |
| keywords[8].id | https://openalex.org/keywords/object-detection |
| keywords[8].score | 0.5667012929916382 |
| keywords[8].display_name | Object detection |
| keywords[9].id | https://openalex.org/keywords/cascade |
| keywords[9].score | 0.5653802752494812 |
| keywords[9].display_name | Cascade |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.5257547497749329 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.42936909198760986 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/precision-and-recall |
| keywords[12].score | 0.4138243496417999 |
| keywords[12].display_name | Precision and recall |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.14247897267341614 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.07978647947311401 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/programming-language |
| keywords[15].score | 0.07621598243713379 |
| keywords[15].display_name | Programming language |
| language | en |
| locations[0].id | mag:2938756873 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/pdf/1904.08189 |
| authorships[0].author.id | https://openalex.org/A5017318126 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8663-7429 |
| authorships[0].author.display_name | Kaiwen Duan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kaiwen Duan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101562162 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2570-9118 |
| authorships[1].author.display_name | Song Bai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Song Bai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075290241 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4831-9451 |
| authorships[2].author.display_name | Lingxi Xie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lingxi Xie |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047226078 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7947-1491 |
| authorships[3].author.display_name | Honggang Qi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Honggang Qi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5028597017 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7542-296X |
| authorships[4].author.display_name | Qingming Huang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qingming Huang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100393506 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7252-5047 |
| authorships[5].author.display_name | Qi Tian |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Qi Tian |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1904.08189 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CenterNet: Object Detection with Keypoint Triplets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W3106250896, https://openalex.org/W2565639579, https://openalex.org/W2963351448, https://openalex.org/W1861492603, https://openalex.org/W3012573144, https://openalex.org/W2194775991, https://openalex.org/W2613718673, https://openalex.org/W2964241181, https://openalex.org/W2963037989, https://openalex.org/W2570343428, https://openalex.org/W1536680647, https://openalex.org/W2102605133, https://openalex.org/W2963299996, https://openalex.org/W2963927307, https://openalex.org/W2796347433, https://openalex.org/W2108598243, https://openalex.org/W2407521645, https://openalex.org/W2936525159, https://openalex.org/W2601564443, https://openalex.org/W2579985080 |
| cited_by_count | 65 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 19 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 26 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 13 |
| locations_count | 1 |
| best_oa_location.id | mag:2938756873 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/1904.08189 |
| primary_location.id | mag:2938756873 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/pdf/1904.08189 |
| publication_date | 2019-04-17 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2963150697, https://openalex.org/W2601564443, https://openalex.org/W2964121744, https://openalex.org/W2519205375, https://openalex.org/W639708223, https://openalex.org/W2570343428, https://openalex.org/W2963058975, https://openalex.org/W2963857746, https://openalex.org/W2964093967, https://openalex.org/W2963351448, https://openalex.org/W1536680647, https://openalex.org/W2962917547, https://openalex.org/W1932624639, https://openalex.org/W2307770531, https://openalex.org/W2725513608, https://openalex.org/W2963068995, https://openalex.org/W2768489488, https://openalex.org/W1832500336, https://openalex.org/W2520951797, https://openalex.org/W2102605133, https://openalex.org/W2288122362, https://openalex.org/W2963402592, https://openalex.org/W2407521645, https://openalex.org/W2274287116, https://openalex.org/W2963813458, https://openalex.org/W2963150001, https://openalex.org/W2557728737, https://openalex.org/W3012573144, https://openalex.org/W2963474687, https://openalex.org/W2565639579, https://openalex.org/W2772989637, https://openalex.org/W2964241181, https://openalex.org/W2194775991, https://openalex.org/W2572745118, https://openalex.org/W2899771611 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 7, 47, 64, 122, 127 |
| abstract_inverted_index.AP | 113 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.On | 107 |
| abstract_inverted_index.an | 20, 29, 112 |
| abstract_inverted_index.as | 60 |
| abstract_inverted_index.at | 102 |
| abstract_inverted_index.by | 92, 121 |
| abstract_inverted_index.is | 140 |
| abstract_inverted_index.of | 19, 66, 89, 114 |
| abstract_inverted_index.to | 16, 135 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.Our | 53 |
| abstract_inverted_index.and | 82, 95, 98 |
| abstract_inverted_index.due | 15 |
| abstract_inverted_index.our | 44 |
| abstract_inverted_index.the | 17, 23, 33, 87, 103, 108 |
| abstract_inverted_index.two | 76 |
| abstract_inverted_index.Code | 139 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.both | 70, 93 |
| abstract_inverted_index.each | 37, 58 |
| abstract_inverted_index.lack | 18 |
| abstract_inverted_index.play | 86 |
| abstract_inverted_index.than | 63 |
| abstract_inverted_index.upon | 46 |
| abstract_inverted_index.with | 40, 126 |
| abstract_inverted_index.large | 8, 123 |
| abstract_inverted_index.named | 55, 79 |
| abstract_inverted_index.often | 5 |
| abstract_inverted_index.pair, | 65 |
| abstract_inverted_index.paper | 27 |
| abstract_inverted_index.quite | 132 |
| abstract_inverted_index.roles | 88 |
| abstract_inverted_index.which | 68, 85, 116 |
| abstract_inverted_index.boxes, | 13 |
| abstract_inverted_index.center | 83 |
| abstract_inverted_index.costs. | 42 |
| abstract_inverted_index.design | 75 |
| abstract_inverted_index.number | 9 |
| abstract_inverted_index.object | 1, 11, 59 |
| abstract_inverted_index.rather | 62 |
| abstract_inverted_index.region | 39 |
| abstract_inverted_index.speed, | 129 |
| abstract_inverted_index.suffer | 6 |
| abstract_inverted_index.visual | 34 |
| abstract_inverted_index.within | 36 |
| abstract_inverted_index.cascade | 80 |
| abstract_inverted_index.central | 104 |
| abstract_inverted_index.corners | 97 |
| abstract_inverted_index.cropped | 24, 38 |
| abstract_inverted_index.detects | 57 |
| abstract_inverted_index.margin. | 124 |
| abstract_inverted_index.minimal | 41 |
| abstract_inverted_index.modules | 78 |
| abstract_inverted_index.We build | 43 |
| abstract_inverted_index.achieves | 111 |
| abstract_inverted_index.arguably | 14 |
| abstract_inverted_index.bounding | 12 |
| abstract_inverted_index.improves | 69 |
| abstract_inverted_index.patterns | 35 |
| abstract_inverted_index.pooling, | 84 |
| abstract_inverted_index.presents | 28 |
| abstract_inverted_index.regions, | 105 |
| abstract_inverted_index.regions. | 25 |
| abstract_inverted_index.solution | 31 |
| abstract_inverted_index.top-left | 94 |
| abstract_inverted_index.CenterNet | 110, 130 |
| abstract_inverted_index.approach, | 54 |
| abstract_inverted_index.available | 141 |
| abstract_inverted_index.detectors | 120 |
| abstract_inverted_index.efficient | 30 |
| abstract_inverted_index.enriching | 90 |
| abstract_inverted_index.framework | 45 |
| abstract_inverted_index.look into | 22 |
| abstract_inverted_index.one-stage | 49, 119 |
| abstract_inverted_index.precision | 71 |
| abstract_inverted_index.providing | 99 |
| abstract_inverted_index.two-stage | 137 |
| abstract_inverted_index.CenterNet, | 56 |
| abstract_inverted_index.CornerNet. | 52 |
| abstract_inverted_index.Meanwhile, | 125 |
| abstract_inverted_index.a triplet, | 61 |
| abstract_inverted_index.additional | 21 |
| abstract_inverted_index.approaches | 4 |
| abstract_inverted_index.comparable | 133 |
| abstract_inverted_index.customized | 77 |
| abstract_inverted_index.detection, | 2 |
| abstract_inverted_index.detectors. | 138 |
| abstract_inverted_index.keypoints, | 67 |
| abstract_inverted_index.and recall. | 72 |
| abstract_inverted_index.information | 101 |
| abstract_inverted_index.outperforms | 117 |
| abstract_inverted_index.performance | 134 |
| abstract_inverted_index.Accordingly, | 73 |
| abstract_inverted_index.all existing | 118 |
| abstract_inverted_index.bottom-right | 96 |
| abstract_inverted_index.demonstrates | 131 |
| abstract_inverted_index.of incorrect | 10 |
| abstract_inverted_index.respectively. | 106 |
| abstract_inverted_index.corner pooling | 81 |
| abstract_inverted_index.detector named | 51 |
| abstract_inverted_index.keypoint-based | 3, 50 |
| abstract_inverted_index.representative | 48 |
| abstract_inverted_index.the top-ranked | 136 |
| abstract_inverted_index.which explores | 32 |
| abstract_inverted_index.MS-COCO dataset, | 109 |
| abstract_inverted_index.\textbf{47.0\%}, | 115 |
| abstract_inverted_index.faster inference | 128 |
| abstract_inverted_index.more recognizable | 100 |
| abstract_inverted_index.information collected | 91 |
| abstract_inverted_index.at https://github.com/Duankaiwen/CenterNet. | 142 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.97123631 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |