Chain-of-Generation: Progressive Latent Diffusion for Text-Guided Molecular Design Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.11894
Text-conditioned molecular generation aims to translate natural-language descriptions into chemical structures, enabling scientists to specify functional groups, scaffolds, and physicochemical constraints without handcrafted rules. Diffusion-based models, particularly latent diffusion models (LDMs), have recently shown promise by performing stochastic search in a continuous latent space that compactly captures molecular semantics. Yet existing methods rely on one-shot conditioning, where the entire prompt is encoded once and applied throughout diffusion, making it hard to satisfy all the requirements in the prompt. We discuss three outstanding challenges of one-shot conditioning generation, including the poor interpretability of the generated components, the failure to generate all substructures, and the overambition in considering all requirements simultaneously. We then propose three principles to address those challenges, motivated by which we propose Chain-of-Generation (CoG), a training-free multi-stage latent diffusion framework. CoG decomposes each prompt into curriculum-ordered semantic segments and progressively incorporates them as intermediate goals, guiding the denoising trajectory toward molecules that satisfy increasingly rich linguistic constraints. To reinforce semantic guidance, we further introduce a post-alignment learning phase that strengthens the correspondence between textual and molecular latent spaces. Extensive experiments on benchmark and real-world tasks demonstrate that CoG yields higher semantic alignment, diversity, and controllability than one-shot baselines, producing molecules that more faithfully reflect complex, compositional prompts while offering transparent insight into the generation process.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2511.11894
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7105981584
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105981584Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.11894Digital Object Identifier
- Title
-
Chain-of-Generation: Progressive Latent Diffusion for Text-Guided Molecular DesignWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-14Full publication date if available
- Authors
-
Li, Lingxiao, Zhang Haobo, Chen Bin, Zhou JiayuList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2511.11894Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2511.11894Direct OA link when available
- Concepts
-
Computer science, Interpretability, Benchmark (surveying), Artificial intelligence, Controllability, Semantics (computer science), Syntax, Theoretical computer science, Space (punctuation), Trajectory, Markov chain, GRASP, Dimensionality reduction, Machine learning, Word (group theory), Argument (complex analysis), Function (biology), Markov process, Perspective (graphical), Latent variable, Diffusion, Feature (linguistics), Dependency (UML)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7105981584 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.11894 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.11894 |
| ids.openalex | https://openalex.org/W7105981584 |
| fwci | 0.0 |
| type | preprint |
| title | Chain-of-Generation: Progressive Latent Diffusion for Text-Guided Molecular Design |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6716956496238708 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2781067378 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5996801257133484 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[1].display_name | Interpretability |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4665299654006958 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4587840139865875 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C48209547 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4383106529712677 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1331104 |
| concepts[4].display_name | Controllability |
| concepts[5].id | https://openalex.org/C184337299 |
| concepts[5].level | 2 |
| concepts[5].score | 0.38907673954963684 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[5].display_name | Semantics (computer science) |
| concepts[6].id | https://openalex.org/C60048249 |
| concepts[6].level | 2 |
| concepts[6].score | 0.37437903881073 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q37437 |
| concepts[6].display_name | Syntax |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3277277946472168 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C2778572836 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3260372281074524 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[8].display_name | Space (punctuation) |
| concepts[9].id | https://openalex.org/C13662910 |
| concepts[9].level | 2 |
| concepts[9].score | 0.315920889377594 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[9].display_name | Trajectory |
| concepts[10].id | https://openalex.org/C98763669 |
| concepts[10].level | 2 |
| concepts[10].score | 0.31289494037628174 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[10].display_name | Markov chain |
| concepts[11].id | https://openalex.org/C171268870 |
| concepts[11].level | 2 |
| concepts[11].score | 0.31177693605422974 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1486676 |
| concepts[11].display_name | GRASP |
| concepts[12].id | https://openalex.org/C70518039 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2848696708679199 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[12].display_name | Dimensionality reduction |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2756476402282715 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C90805587 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2698438763618469 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[14].display_name | Word (group theory) |
| concepts[15].id | https://openalex.org/C98184364 |
| concepts[15].level | 2 |
| concepts[15].score | 0.269104927778244 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1780131 |
| concepts[15].display_name | Argument (complex analysis) |
| concepts[16].id | https://openalex.org/C14036430 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2622331976890564 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[16].display_name | Function (biology) |
| concepts[17].id | https://openalex.org/C159886148 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2601493000984192 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[17].display_name | Markov process |
| concepts[18].id | https://openalex.org/C12713177 |
| concepts[18].level | 2 |
| concepts[18].score | 0.25989067554473877 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[18].display_name | Perspective (graphical) |
| concepts[19].id | https://openalex.org/C51167844 |
| concepts[19].level | 2 |
| concepts[19].score | 0.25966939330101013 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[19].display_name | Latent variable |
| concepts[20].id | https://openalex.org/C69357855 |
| concepts[20].level | 2 |
| concepts[20].score | 0.2586568593978882 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[20].display_name | Diffusion |
| concepts[21].id | https://openalex.org/C2776401178 |
| concepts[21].level | 2 |
| concepts[21].score | 0.25220805406570435 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[21].display_name | Feature (linguistics) |
| concepts[22].id | https://openalex.org/C19768560 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2505948841571808 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[22].display_name | Dependency (UML) |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.5996801257133484 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.4665299654006958 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/controllability |
| keywords[2].score | 0.4383106529712677 |
| keywords[2].display_name | Controllability |
| keywords[3].id | https://openalex.org/keywords/semantics |
| keywords[3].score | 0.38907673954963684 |
| keywords[3].display_name | Semantics (computer science) |
| keywords[4].id | https://openalex.org/keywords/syntax |
| keywords[4].score | 0.37437903881073 |
| keywords[4].display_name | Syntax |
| keywords[5].id | https://openalex.org/keywords/space |
| keywords[5].score | 0.3260372281074524 |
| keywords[5].display_name | Space (punctuation) |
| keywords[6].id | https://openalex.org/keywords/trajectory |
| keywords[6].score | 0.315920889377594 |
| keywords[6].display_name | Trajectory |
| keywords[7].id | https://openalex.org/keywords/markov-chain |
| keywords[7].score | 0.31289494037628174 |
| keywords[7].display_name | Markov chain |
| language | |
| locations[0].id | doi:10.48550/arxiv.2511.11894 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2511.11894 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A2742537177 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Li, Lingxiao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Lingxiao |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2347808965 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhang Haobo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Haobo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A1862245032 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6390-1728 |
| authorships[2].author.display_name | Chen Bin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Bin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A2365847858 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhou Jiayu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zhou, Jiayu |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2511.11894 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | Chain-of-Generation: Progressive Latent Diffusion for Text-Guided Molecular Design |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-19T23:39:43.309859 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2511.11894 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.11894 |
| primary_location.id | doi:10.48550/arxiv.2511.11894 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2511.11894 |
| publication_date | 2025-11-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 40, 125, 165 |
| abstract_inverted_index.To | 158 |
| abstract_inverted_index.We | 78, 109 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.by | 35, 119 |
| abstract_inverted_index.in | 39, 75, 104 |
| abstract_inverted_index.is | 60 |
| abstract_inverted_index.it | 68 |
| abstract_inverted_index.of | 83, 91 |
| abstract_inverted_index.on | 53, 181 |
| abstract_inverted_index.to | 4, 13, 70, 97, 114 |
| abstract_inverted_index.we | 121, 162 |
| abstract_inverted_index.CoG | 131, 188 |
| abstract_inverted_index.Yet | 49 |
| abstract_inverted_index.all | 72, 99, 106 |
| abstract_inverted_index.and | 18, 63, 101, 139, 175, 183, 194 |
| abstract_inverted_index.the | 57, 73, 76, 88, 92, 95, 102, 147, 171, 213 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.each | 133 |
| abstract_inverted_index.hard | 69 |
| abstract_inverted_index.have | 31 |
| abstract_inverted_index.into | 8, 135, 212 |
| abstract_inverted_index.more | 202 |
| abstract_inverted_index.once | 62 |
| abstract_inverted_index.poor | 89 |
| abstract_inverted_index.rely | 52 |
| abstract_inverted_index.rich | 155 |
| abstract_inverted_index.than | 196 |
| abstract_inverted_index.that | 44, 152, 169, 187, 201 |
| abstract_inverted_index.them | 142 |
| abstract_inverted_index.then | 110 |
| abstract_inverted_index.phase | 168 |
| abstract_inverted_index.shown | 33 |
| abstract_inverted_index.space | 43 |
| abstract_inverted_index.tasks | 185 |
| abstract_inverted_index.those | 116 |
| abstract_inverted_index.three | 80, 112 |
| abstract_inverted_index.where | 56 |
| abstract_inverted_index.which | 120 |
| abstract_inverted_index.while | 208 |
| abstract_inverted_index.(CoG), | 124 |
| abstract_inverted_index.entire | 58 |
| abstract_inverted_index.goals, | 145 |
| abstract_inverted_index.higher | 190 |
| abstract_inverted_index.latent | 27, 42, 128, 177 |
| abstract_inverted_index.making | 67 |
| abstract_inverted_index.models | 29 |
| abstract_inverted_index.prompt | 59, 134 |
| abstract_inverted_index.rules. | 23 |
| abstract_inverted_index.search | 38 |
| abstract_inverted_index.toward | 150 |
| abstract_inverted_index.yields | 189 |
| abstract_inverted_index.(LDMs), | 30 |
| abstract_inverted_index.address | 115 |
| abstract_inverted_index.applied | 64 |
| abstract_inverted_index.between | 173 |
| abstract_inverted_index.discuss | 79 |
| abstract_inverted_index.encoded | 61 |
| abstract_inverted_index.failure | 96 |
| abstract_inverted_index.further | 163 |
| abstract_inverted_index.groups, | 16 |
| abstract_inverted_index.guiding | 146 |
| abstract_inverted_index.insight | 211 |
| abstract_inverted_index.methods | 51 |
| abstract_inverted_index.models, | 25 |
| abstract_inverted_index.promise | 34 |
| abstract_inverted_index.prompt. | 77 |
| abstract_inverted_index.prompts | 207 |
| abstract_inverted_index.propose | 111, 122 |
| abstract_inverted_index.reflect | 204 |
| abstract_inverted_index.satisfy | 71, 153 |
| abstract_inverted_index.spaces. | 178 |
| abstract_inverted_index.specify | 14 |
| abstract_inverted_index.textual | 174 |
| abstract_inverted_index.without | 21 |
| abstract_inverted_index.captures | 46 |
| abstract_inverted_index.chemical | 9 |
| abstract_inverted_index.complex, | 205 |
| abstract_inverted_index.enabling | 11 |
| abstract_inverted_index.existing | 50 |
| abstract_inverted_index.generate | 98 |
| abstract_inverted_index.learning | 167 |
| abstract_inverted_index.offering | 209 |
| abstract_inverted_index.one-shot | 54, 84, 197 |
| abstract_inverted_index.process. | 215 |
| abstract_inverted_index.recently | 32 |
| abstract_inverted_index.segments | 138 |
| abstract_inverted_index.semantic | 137, 160, 191 |
| abstract_inverted_index.Extensive | 179 |
| abstract_inverted_index.benchmark | 182 |
| abstract_inverted_index.compactly | 45 |
| abstract_inverted_index.denoising | 148 |
| abstract_inverted_index.diffusion | 28, 129 |
| abstract_inverted_index.generated | 93 |
| abstract_inverted_index.guidance, | 161 |
| abstract_inverted_index.including | 87 |
| abstract_inverted_index.introduce | 164 |
| abstract_inverted_index.molecular | 1, 47, 176 |
| abstract_inverted_index.molecules | 151, 200 |
| abstract_inverted_index.motivated | 118 |
| abstract_inverted_index.producing | 199 |
| abstract_inverted_index.reinforce | 159 |
| abstract_inverted_index.translate | 5 |
| abstract_inverted_index.alignment, | 192 |
| abstract_inverted_index.baselines, | 198 |
| abstract_inverted_index.challenges | 82 |
| abstract_inverted_index.continuous | 41 |
| abstract_inverted_index.decomposes | 132 |
| abstract_inverted_index.diffusion, | 66 |
| abstract_inverted_index.diversity, | 193 |
| abstract_inverted_index.faithfully | 203 |
| abstract_inverted_index.framework. | 130 |
| abstract_inverted_index.functional | 15 |
| abstract_inverted_index.generation | 2, 214 |
| abstract_inverted_index.linguistic | 156 |
| abstract_inverted_index.performing | 36 |
| abstract_inverted_index.principles | 113 |
| abstract_inverted_index.real-world | 184 |
| abstract_inverted_index.scaffolds, | 17 |
| abstract_inverted_index.scientists | 12 |
| abstract_inverted_index.semantics. | 48 |
| abstract_inverted_index.stochastic | 37 |
| abstract_inverted_index.throughout | 65 |
| abstract_inverted_index.trajectory | 149 |
| abstract_inverted_index.challenges, | 117 |
| abstract_inverted_index.components, | 94 |
| abstract_inverted_index.considering | 105 |
| abstract_inverted_index.constraints | 20 |
| abstract_inverted_index.demonstrate | 186 |
| abstract_inverted_index.experiments | 180 |
| abstract_inverted_index.generation, | 86 |
| abstract_inverted_index.handcrafted | 22 |
| abstract_inverted_index.multi-stage | 127 |
| abstract_inverted_index.outstanding | 81 |
| abstract_inverted_index.strengthens | 170 |
| abstract_inverted_index.structures, | 10 |
| abstract_inverted_index.transparent | 210 |
| abstract_inverted_index.conditioning | 85 |
| abstract_inverted_index.constraints. | 157 |
| abstract_inverted_index.descriptions | 7 |
| abstract_inverted_index.incorporates | 141 |
| abstract_inverted_index.increasingly | 154 |
| abstract_inverted_index.intermediate | 144 |
| abstract_inverted_index.overambition | 103 |
| abstract_inverted_index.particularly | 26 |
| abstract_inverted_index.requirements | 74, 107 |
| abstract_inverted_index.compositional | 206 |
| abstract_inverted_index.conditioning, | 55 |
| abstract_inverted_index.progressively | 140 |
| abstract_inverted_index.training-free | 126 |
| abstract_inverted_index.correspondence | 172 |
| abstract_inverted_index.post-alignment | 166 |
| abstract_inverted_index.substructures, | 100 |
| abstract_inverted_index.Diffusion-based | 24 |
| abstract_inverted_index.controllability | 195 |
| abstract_inverted_index.physicochemical | 19 |
| abstract_inverted_index.simultaneously. | 108 |
| abstract_inverted_index.Text-conditioned | 0 |
| abstract_inverted_index.interpretability | 90 |
| abstract_inverted_index.natural-language | 6 |
| abstract_inverted_index.curriculum-ordered | 136 |
| abstract_inverted_index.Chain-of-Generation | 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |