Challenges for Predictive Modeling with Neural Network Techniques using Error-Prone Dietary Intake Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.09338
Dietary intake data are routinely drawn upon to explore diet-health relationships. However, these data are often subject to measurement error, distorting the true relationships. Beyond measurement error, there are likely complex synergistic and sometimes antagonistic interactions between different dietary components, complicating the relationships between diet and health outcomes. Flexible models are required to capture the nuance that these complex interactions introduce. This complexity makes research on diet-health relationships an appealing candidate for the application of machine learning techniques, and in particular, neural networks. Neural networks are computational models that are able to capture highly complex, nonlinear relationships so long as sufficient data are available. While these models have been applied in many domains, the impacts of measurement error on the performance of predictive modeling has not been systematically investigated. However, dietary intake data are typically collected using self-report methods and are prone to large amounts of measurement error. In this work, we demonstrate the ways in which measurement error erodes the performance of neural networks, and illustrate the care that is required for leveraging these models in the presence of error. We demonstrate the role that sample size and replicate measurements play on model performance, indicate a motivation for the investigation of transformations to additivity, and illustrate the caution required to prevent model overfitting. While the past performance of neural networks across various domains make them an attractive candidate for examining diet-health relationships, our work demonstrates that substantial care and further methodological development are both required to observe increased predictive performance when applying these techniques, compared to more traditional statistical procedures.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.09338
- https://arxiv.org/pdf/2311.09338
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388787477
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388787477Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.09338Digital Object Identifier
- Title
-
Challenges for Predictive Modeling with Neural Network Techniques using Error-Prone Dietary Intake DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-15Full publication date if available
- Authors
-
Dylan Spicker, Amir Nazemi, Joy M. Hutchinson, Paul Fieguth, Sharon I. Kirkpatrick, Michael B. Wallace, Kevin W. DoddList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.09338Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.09338Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.09338Direct OA link when available
- Concepts
-
Overfitting, Artificial neural network, Computer science, Machine learning, Artificial intelligence, Replicate, Sample (material), Predictive modelling, Data mining, Statistics, Mathematics, Chromatography, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388787477 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.09338 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.09338 |
| ids.openalex | https://openalex.org/W4388787477 |
| fwci | 0.94733084 |
| type | preprint |
| title | Challenges for Predictive Modeling with Neural Network Techniques using Error-Prone Dietary Intake Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10866 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9955999851226807 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2739 |
| topics[0].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[0].display_name | Nutritional Studies and Diet |
| topics[1].id | https://openalex.org/T12267 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9398999810218811 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2737 |
| topics[1].subfield.display_name | Physiology |
| topics[1].display_name | Diet and metabolism studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8976157903671265 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6778095960617065 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6415418982505798 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6246811151504517 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5695650577545166 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2781162219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4527677297592163 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q26250693 |
| concepts[5].display_name | Replicate |
| concepts[6].id | https://openalex.org/C198531522 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4224832355976105 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[6].display_name | Sample (material) |
| concepts[7].id | https://openalex.org/C45804977 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4174804389476776 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[7].display_name | Predictive modelling |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37709030508995056 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.14345890283584595 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12533223628997803 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C43617362 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[11].display_name | Chromatography |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.8976157903671265 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6778095960617065 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6415418982505798 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6246811151504517 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5695650577545166 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/replicate |
| keywords[5].score | 0.4527677297592163 |
| keywords[5].display_name | Replicate |
| keywords[6].id | https://openalex.org/keywords/sample |
| keywords[6].score | 0.4224832355976105 |
| keywords[6].display_name | Sample (material) |
| keywords[7].id | https://openalex.org/keywords/predictive-modelling |
| keywords[7].score | 0.4174804389476776 |
| keywords[7].display_name | Predictive modelling |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.37709030508995056 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.14345890283584595 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.12533223628997803 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.09338 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.09338 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.09338 |
| locations[1].id | doi:10.48550/arxiv.2311.09338 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.09338 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5077505931 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3200-5212 |
| authorships[0].author.display_name | Dylan Spicker |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Spicker, Dylan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103324105 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8405-473X |
| authorships[1].author.display_name | Amir Nazemi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nazemi, Amir |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5074275154 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1615-7964 |
| authorships[2].author.display_name | Joy M. Hutchinson |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hutchinson, Joy |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5078015739 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7260-2260 |
| authorships[3].author.display_name | Paul Fieguth |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fieguth, Paul |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5070627095 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9896-5975 |
| authorships[4].author.display_name | Sharon I. Kirkpatrick |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kirkpatrick, Sharon I. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5010559287 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6446-5785 |
| authorships[5].author.display_name | Michael B. Wallace |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wallace, Michael |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5110208713 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Kevin W. Dodd |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Dodd, Kevin W. |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.09338 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Challenges for Predictive Modeling with Neural Network Techniques using Error-Prone Dietary Intake Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10866 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9955999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2739 |
| primary_topic.subfield.display_name | Public Health, Environmental and Occupational Health |
| primary_topic.display_name | Nutritional Studies and Diet |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W3009056573, https://openalex.org/W2922073769, https://openalex.org/W4297676672, https://openalex.org/W4281702477, https://openalex.org/W4254851101, https://openalex.org/W3171007296, https://openalex.org/W4378510483, https://openalex.org/W2490526372 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.09338 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.09338 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.09338 |
| primary_location.id | pmh:oai:arXiv.org:2311.09338 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.09338 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.09338 |
| publication_date | 2023-11-15 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 196 |
| abstract_inverted_index.In | 148 |
| abstract_inverted_index.We | 181 |
| abstract_inverted_index.an | 68, 226 |
| abstract_inverted_index.as | 99 |
| abstract_inverted_index.in | 79, 110, 155, 176 |
| abstract_inverted_index.is | 170 |
| abstract_inverted_index.of | 74, 115, 121, 145, 162, 179, 201, 218 |
| abstract_inverted_index.on | 65, 118, 192 |
| abstract_inverted_index.so | 97 |
| abstract_inverted_index.to | 7, 17, 52, 91, 142, 203, 210, 246, 256 |
| abstract_inverted_index.we | 151 |
| abstract_inverted_index.and | 32, 45, 78, 139, 165, 188, 205, 239 |
| abstract_inverted_index.are | 3, 14, 28, 50, 85, 89, 102, 133, 140, 243 |
| abstract_inverted_index.for | 71, 172, 198, 229 |
| abstract_inverted_index.has | 124 |
| abstract_inverted_index.not | 125 |
| abstract_inverted_index.our | 233 |
| abstract_inverted_index.the | 21, 41, 54, 72, 113, 119, 153, 160, 167, 177, 183, 199, 207, 215 |
| abstract_inverted_index.This | 61 |
| abstract_inverted_index.able | 90 |
| abstract_inverted_index.been | 108, 126 |
| abstract_inverted_index.both | 244 |
| abstract_inverted_index.care | 168, 238 |
| abstract_inverted_index.data | 2, 13, 101, 132 |
| abstract_inverted_index.diet | 44 |
| abstract_inverted_index.have | 107 |
| abstract_inverted_index.long | 98 |
| abstract_inverted_index.make | 224 |
| abstract_inverted_index.many | 111 |
| abstract_inverted_index.more | 257 |
| abstract_inverted_index.past | 216 |
| abstract_inverted_index.play | 191 |
| abstract_inverted_index.role | 184 |
| abstract_inverted_index.size | 187 |
| abstract_inverted_index.that | 56, 88, 169, 185, 236 |
| abstract_inverted_index.them | 225 |
| abstract_inverted_index.this | 149 |
| abstract_inverted_index.true | 22 |
| abstract_inverted_index.upon | 6 |
| abstract_inverted_index.ways | 154 |
| abstract_inverted_index.when | 251 |
| abstract_inverted_index.work | 234 |
| abstract_inverted_index.While | 104, 214 |
| abstract_inverted_index.drawn | 5 |
| abstract_inverted_index.error | 117, 158 |
| abstract_inverted_index.large | 143 |
| abstract_inverted_index.makes | 63 |
| abstract_inverted_index.model | 193, 212 |
| abstract_inverted_index.often | 15 |
| abstract_inverted_index.prone | 141 |
| abstract_inverted_index.there | 27 |
| abstract_inverted_index.these | 12, 57, 105, 174, 253 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.which | 156 |
| abstract_inverted_index.work, | 150 |
| abstract_inverted_index.Beyond | 24 |
| abstract_inverted_index.Neural | 83 |
| abstract_inverted_index.across | 221 |
| abstract_inverted_index.erodes | 159 |
| abstract_inverted_index.error, | 19, 26 |
| abstract_inverted_index.error. | 147, 180 |
| abstract_inverted_index.health | 46 |
| abstract_inverted_index.highly | 93 |
| abstract_inverted_index.intake | 1, 131 |
| abstract_inverted_index.likely | 29 |
| abstract_inverted_index.models | 49, 87, 106, 175 |
| abstract_inverted_index.neural | 81, 163, 219 |
| abstract_inverted_index.nuance | 55 |
| abstract_inverted_index.sample | 186 |
| abstract_inverted_index.Dietary | 0 |
| abstract_inverted_index.amounts | 144 |
| abstract_inverted_index.applied | 109 |
| abstract_inverted_index.between | 36, 43 |
| abstract_inverted_index.capture | 53, 92 |
| abstract_inverted_index.caution | 208 |
| abstract_inverted_index.complex | 30, 58 |
| abstract_inverted_index.dietary | 38, 130 |
| abstract_inverted_index.domains | 223 |
| abstract_inverted_index.explore | 8 |
| abstract_inverted_index.further | 240 |
| abstract_inverted_index.impacts | 114 |
| abstract_inverted_index.machine | 75 |
| abstract_inverted_index.methods | 138 |
| abstract_inverted_index.observe | 247 |
| abstract_inverted_index.prevent | 211 |
| abstract_inverted_index.subject | 16 |
| abstract_inverted_index.various | 222 |
| abstract_inverted_index.Flexible | 48 |
| abstract_inverted_index.However, | 11, 129 |
| abstract_inverted_index.applying | 252 |
| abstract_inverted_index.compared | 255 |
| abstract_inverted_index.complex, | 94 |
| abstract_inverted_index.domains, | 112 |
| abstract_inverted_index.indicate | 195 |
| abstract_inverted_index.learning | 76 |
| abstract_inverted_index.modeling | 123 |
| abstract_inverted_index.networks | 84, 220 |
| abstract_inverted_index.presence | 178 |
| abstract_inverted_index.required | 51, 171, 209, 245 |
| abstract_inverted_index.research | 64 |
| abstract_inverted_index.appealing | 69 |
| abstract_inverted_index.candidate | 70, 228 |
| abstract_inverted_index.collected | 135 |
| abstract_inverted_index.different | 37 |
| abstract_inverted_index.examining | 230 |
| abstract_inverted_index.increased | 248 |
| abstract_inverted_index.networks, | 164 |
| abstract_inverted_index.networks. | 82 |
| abstract_inverted_index.nonlinear | 95 |
| abstract_inverted_index.outcomes. | 47 |
| abstract_inverted_index.replicate | 189 |
| abstract_inverted_index.routinely | 4 |
| abstract_inverted_index.sometimes | 33 |
| abstract_inverted_index.typically | 134 |
| abstract_inverted_index.attractive | 227 |
| abstract_inverted_index.available. | 103 |
| abstract_inverted_index.complexity | 62 |
| abstract_inverted_index.distorting | 20 |
| abstract_inverted_index.illustrate | 166, 206 |
| abstract_inverted_index.introduce. | 60 |
| abstract_inverted_index.leveraging | 173 |
| abstract_inverted_index.motivation | 197 |
| abstract_inverted_index.predictive | 122, 249 |
| abstract_inverted_index.sufficient | 100 |
| abstract_inverted_index.additivity, | 204 |
| abstract_inverted_index.application | 73 |
| abstract_inverted_index.components, | 39 |
| abstract_inverted_index.demonstrate | 152, 182 |
| abstract_inverted_index.development | 242 |
| abstract_inverted_index.diet-health | 9, 66, 231 |
| abstract_inverted_index.measurement | 18, 25, 116, 146, 157 |
| abstract_inverted_index.particular, | 80 |
| abstract_inverted_index.performance | 120, 161, 217, 250 |
| abstract_inverted_index.procedures. | 260 |
| abstract_inverted_index.self-report | 137 |
| abstract_inverted_index.statistical | 259 |
| abstract_inverted_index.substantial | 237 |
| abstract_inverted_index.synergistic | 31 |
| abstract_inverted_index.techniques, | 77, 254 |
| abstract_inverted_index.traditional | 258 |
| abstract_inverted_index.antagonistic | 34 |
| abstract_inverted_index.complicating | 40 |
| abstract_inverted_index.demonstrates | 235 |
| abstract_inverted_index.interactions | 35, 59 |
| abstract_inverted_index.measurements | 190 |
| abstract_inverted_index.overfitting. | 213 |
| abstract_inverted_index.performance, | 194 |
| abstract_inverted_index.computational | 86 |
| abstract_inverted_index.investigated. | 128 |
| abstract_inverted_index.investigation | 200 |
| abstract_inverted_index.relationships | 42, 67, 96 |
| abstract_inverted_index.methodological | 241 |
| abstract_inverted_index.relationships, | 232 |
| abstract_inverted_index.relationships. | 10, 23 |
| abstract_inverted_index.systematically | 127 |
| abstract_inverted_index.transformations | 202 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.73282333 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |