Chance-Constrained Optimal Design of Porous Thermal Insulation Systems Under Spatially Correlated Uncertainty Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.02077
This paper presents a computationally efficient method for the optimal design of silica aerogel porous material systems, balancing thermal insulation performance with mechanical stability under stress concentrations. The proposed approach explicitly accounts for additive manufacturing uncertainties by modeling material porosity as a spatially correlated stochastic field within a multiphase finite element formulation. A risk-averse objective function, incorporating statistical moments of the design objective, is employed in conjunction with chance constraints that enforce mechanical stability by restricting the probability of exceeding critical stress thresholds. To mitigate the prohibitively high computational cost associated with the large-dimensional uncertainty space and Monte Carlo estimations of the objective function's statistical moments, a second-order Taylor expansion is utilized as a control variate. Furthermore, a continuation-based smoothing strategy is introduced to address the non-differentiability of the chance constraints, ensuring compatibility with gradient-based optimization. The resulting framework achieves computational scalability, remaining agnostic to the dimensionality of the stochastic design space. The effectiveness of the method is demonstrated through numerical experiments on two- and three-dimensional thermal break systems for building insulation. The results highlight the framework's capability to solve large-scale, chance-constrained optimal design problems governed by finite element models with uncertain design parameter spaces reaching dimensions in the hundreds of thousands.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.02077
- https://arxiv.org/pdf/2501.02077
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406128684
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406128684Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.02077Digital Object Identifier
- Title
-
Chance-Constrained Optimal Design of Porous Thermal Insulation Systems Under Spatially Correlated UncertaintyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-03Full publication date if available
- Authors
-
Pratyush Singh, Danial FaghihiList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.02077Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.02077Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.02077Direct OA link when available
- Concepts
-
Mathematical optimization, Computer science, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406128684 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.02077 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.02077 |
| ids.openalex | https://openalex.org/W4406128684 |
| fwci | |
| type | preprint |
| title | Chance-Constrained Optimal Design of Porous Thermal Insulation Systems Under Spatially Correlated Uncertainty |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10848 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9846000075340271 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[1].id | https://openalex.org/T10928 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9772999882698059 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Probabilistic and Robust Engineering Design |
| topics[2].id | https://openalex.org/T11115 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9176999926567078 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Topology Optimization in Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126255220 |
| concepts[0].level | 1 |
| concepts[0].score | 0.526756227016449 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[0].display_name | Mathematical optimization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4397551119327545 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.29018980264663696 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[0].score | 0.526756227016449 |
| keywords[0].display_name | Mathematical optimization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4397551119327545 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.29018980264663696 |
| keywords[2].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.02077 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.02077 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.02077 |
| locations[1].id | doi:10.48550/arxiv.2501.02077 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.02077 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5037122155 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1818-9724 |
| authorships[0].author.display_name | Pratyush Singh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Singh, Pratyush Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5003194178 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2004-509X |
| authorships[1].author.display_name | Danial Faghihi |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Faghihi, Danial |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.02077 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-08T00:00:00 |
| display_name | Chance-Constrained Optimal Design of Porous Thermal Insulation Systems Under Spatially Correlated Uncertainty |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10848 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9846000075340271 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Multi-Objective Optimization Algorithms |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.02077 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.02077 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.02077 |
| primary_location.id | pmh:oai:arXiv.org:2501.02077 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.02077 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.02077 |
| publication_date | 2025-01-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 52 |
| abstract_inverted_index.a | 3, 41, 47, 106, 113, 117 |
| abstract_inverted_index.To | 83 |
| abstract_inverted_index.as | 40, 112 |
| abstract_inverted_index.by | 36, 74, 186 |
| abstract_inverted_index.in | 65, 197 |
| abstract_inverted_index.is | 63, 110, 121, 157 |
| abstract_inverted_index.of | 11, 59, 78, 100, 127, 147, 154, 200 |
| abstract_inverted_index.on | 162 |
| abstract_inverted_index.to | 123, 144, 178 |
| abstract_inverted_index.The | 27, 136, 152, 172 |
| abstract_inverted_index.and | 96, 164 |
| abstract_inverted_index.for | 7, 32, 169 |
| abstract_inverted_index.the | 8, 60, 76, 85, 92, 101, 125, 128, 145, 148, 155, 175, 198 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.cost | 89 |
| abstract_inverted_index.high | 87 |
| abstract_inverted_index.that | 70 |
| abstract_inverted_index.two- | 163 |
| abstract_inverted_index.with | 21, 67, 91, 133, 190 |
| abstract_inverted_index.Carlo | 98 |
| abstract_inverted_index.Monte | 97 |
| abstract_inverted_index.break | 167 |
| abstract_inverted_index.field | 45 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.solve | 179 |
| abstract_inverted_index.space | 95 |
| abstract_inverted_index.under | 24 |
| abstract_inverted_index.Taylor | 108 |
| abstract_inverted_index.chance | 68, 129 |
| abstract_inverted_index.design | 10, 61, 150, 183, 192 |
| abstract_inverted_index.finite | 49, 187 |
| abstract_inverted_index.method | 6, 156 |
| abstract_inverted_index.models | 189 |
| abstract_inverted_index.porous | 14 |
| abstract_inverted_index.silica | 12 |
| abstract_inverted_index.space. | 151 |
| abstract_inverted_index.spaces | 194 |
| abstract_inverted_index.stress | 25, 81 |
| abstract_inverted_index.within | 46 |
| abstract_inverted_index.address | 124 |
| abstract_inverted_index.aerogel | 13 |
| abstract_inverted_index.control | 114 |
| abstract_inverted_index.element | 50, 188 |
| abstract_inverted_index.enforce | 71 |
| abstract_inverted_index.moments | 58 |
| abstract_inverted_index.optimal | 9, 182 |
| abstract_inverted_index.results | 173 |
| abstract_inverted_index.systems | 168 |
| abstract_inverted_index.thermal | 18, 166 |
| abstract_inverted_index.through | 159 |
| abstract_inverted_index.accounts | 31 |
| abstract_inverted_index.achieves | 139 |
| abstract_inverted_index.additive | 33 |
| abstract_inverted_index.agnostic | 143 |
| abstract_inverted_index.approach | 29 |
| abstract_inverted_index.building | 170 |
| abstract_inverted_index.critical | 80 |
| abstract_inverted_index.employed | 64 |
| abstract_inverted_index.ensuring | 131 |
| abstract_inverted_index.governed | 185 |
| abstract_inverted_index.hundreds | 199 |
| abstract_inverted_index.material | 15, 38 |
| abstract_inverted_index.mitigate | 84 |
| abstract_inverted_index.modeling | 37 |
| abstract_inverted_index.moments, | 105 |
| abstract_inverted_index.porosity | 39 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.problems | 184 |
| abstract_inverted_index.proposed | 28 |
| abstract_inverted_index.reaching | 195 |
| abstract_inverted_index.strategy | 120 |
| abstract_inverted_index.systems, | 16 |
| abstract_inverted_index.utilized | 111 |
| abstract_inverted_index.variate. | 115 |
| abstract_inverted_index.balancing | 17 |
| abstract_inverted_index.efficient | 5 |
| abstract_inverted_index.exceeding | 79 |
| abstract_inverted_index.expansion | 109 |
| abstract_inverted_index.framework | 138 |
| abstract_inverted_index.function, | 55 |
| abstract_inverted_index.highlight | 174 |
| abstract_inverted_index.numerical | 160 |
| abstract_inverted_index.objective | 54, 102 |
| abstract_inverted_index.parameter | 193 |
| abstract_inverted_index.remaining | 142 |
| abstract_inverted_index.resulting | 137 |
| abstract_inverted_index.smoothing | 119 |
| abstract_inverted_index.spatially | 42 |
| abstract_inverted_index.stability | 23, 73 |
| abstract_inverted_index.uncertain | 191 |
| abstract_inverted_index.associated | 90 |
| abstract_inverted_index.capability | 177 |
| abstract_inverted_index.correlated | 43 |
| abstract_inverted_index.dimensions | 196 |
| abstract_inverted_index.explicitly | 30 |
| abstract_inverted_index.function's | 103 |
| abstract_inverted_index.insulation | 19 |
| abstract_inverted_index.introduced | 122 |
| abstract_inverted_index.mechanical | 22, 72 |
| abstract_inverted_index.multiphase | 48 |
| abstract_inverted_index.objective, | 62 |
| abstract_inverted_index.stochastic | 44, 149 |
| abstract_inverted_index.thousands. | 201 |
| abstract_inverted_index.conjunction | 66 |
| abstract_inverted_index.constraints | 69 |
| abstract_inverted_index.estimations | 99 |
| abstract_inverted_index.experiments | 161 |
| abstract_inverted_index.framework's | 176 |
| abstract_inverted_index.insulation. | 171 |
| abstract_inverted_index.performance | 20 |
| abstract_inverted_index.probability | 77 |
| abstract_inverted_index.restricting | 75 |
| abstract_inverted_index.risk-averse | 53 |
| abstract_inverted_index.statistical | 57, 104 |
| abstract_inverted_index.thresholds. | 82 |
| abstract_inverted_index.uncertainty | 94 |
| abstract_inverted_index.Furthermore, | 116 |
| abstract_inverted_index.constraints, | 130 |
| abstract_inverted_index.demonstrated | 158 |
| abstract_inverted_index.formulation. | 51 |
| abstract_inverted_index.large-scale, | 180 |
| abstract_inverted_index.scalability, | 141 |
| abstract_inverted_index.second-order | 107 |
| abstract_inverted_index.compatibility | 132 |
| abstract_inverted_index.computational | 88, 140 |
| abstract_inverted_index.effectiveness | 153 |
| abstract_inverted_index.incorporating | 56 |
| abstract_inverted_index.manufacturing | 34 |
| abstract_inverted_index.optimization. | 135 |
| abstract_inverted_index.prohibitively | 86 |
| abstract_inverted_index.uncertainties | 35 |
| abstract_inverted_index.dimensionality | 146 |
| abstract_inverted_index.gradient-based | 134 |
| abstract_inverted_index.computationally | 4 |
| abstract_inverted_index.concentrations. | 26 |
| abstract_inverted_index.large-dimensional | 93 |
| abstract_inverted_index.three-dimensional | 165 |
| abstract_inverted_index.chance-constrained | 181 |
| abstract_inverted_index.continuation-based | 118 |
| abstract_inverted_index.non-differentiability | 126 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |