Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1510.04850
We address the problem of detecting changes in multivariate datastreams, and we investigate the intrinsic difficulty that change-detection methods have to face when the data dimension scales. In particular, we consider a general approach where changes are detected by comparing the distribution of the log-likelihood of the datastream over different time windows. Despite the fact that this approach constitutes the frame of several change-detection methods, its effectiveness when data dimension scales has never been investigated, which is indeed the goal of our paper. We show that the magnitude of the change can be naturally measured by the symmetric Kullback-Leibler divergence between the pre- and post-change distributions, and that the detectability of a change of a given magnitude worsens when the data dimension increases. This problem, which we refer to as \emph{detectability loss}, is due to the linear relationship between the variance of the log-likelihood and the data dimension. We analytically derive the detectability loss on Gaussian-distributed datastreams, and empirically demonstrate that this problem holds also on real-world datasets and that can be harmful even at low data-dimensions (say, 10).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1510.04850
- https://arxiv.org/pdf/1510.04850
- OA Status
- green
- Cited By
- 4
- References
- 23
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2201315292
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2201315292Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1510.04850Digital Object Identifier
- Title
-
Change Detection in Multivariate Datastreams: Likelihood and Detectability LossWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-10-16Full publication date if available
- Authors
-
Cesare Alippi, Giacomo Boracchi, Diego Carrera, Manuel RoveriList of authors in order
- Landing page
-
https://arxiv.org/abs/1510.04850Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1510.04850Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1510.04850Direct OA link when available
- Concepts
-
Dimension (graph theory), Divergence (linguistics), Change detection, Gaussian, Variance (accounting), Multivariate statistics, Multivariate normal distribution, Kullback–Leibler divergence, Mathematics, Magnitude (astronomy), Statistics, Computer science, Artificial intelligence, Physics, Combinatorics, Linguistics, Quantum mechanics, Philosophy, Accounting, Business, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2201315292 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1510.04850 |
| ids.doi | https://doi.org/10.48550/arxiv.1510.04850 |
| ids.mag | 2201315292 |
| ids.openalex | https://openalex.org/W2201315292 |
| fwci | 0.0 |
| type | preprint |
| title | Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1374 |
| biblio.first_page | 1368 |
| topics[0].id | https://openalex.org/T12761 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Data Stream Mining Techniques |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9747999906539917 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.954800009727478 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33676613 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7365677356719971 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[0].display_name | Dimension (graph theory) |
| concepts[1].id | https://openalex.org/C207390915 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7091478109359741 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[1].display_name | Divergence (linguistics) |
| concepts[2].id | https://openalex.org/C203595873 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6383794546127319 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25389927 |
| concepts[2].display_name | Change detection |
| concepts[3].id | https://openalex.org/C163716315 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6241662502288818 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[3].display_name | Gaussian |
| concepts[4].id | https://openalex.org/C196083921 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6125423312187195 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[4].display_name | Variance (accounting) |
| concepts[5].id | https://openalex.org/C161584116 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5975393056869507 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[5].display_name | Multivariate statistics |
| concepts[6].id | https://openalex.org/C177384507 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4704667031764984 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1149000 |
| concepts[6].display_name | Multivariate normal distribution |
| concepts[7].id | https://openalex.org/C171752962 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45786717534065247 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q255166 |
| concepts[7].display_name | Kullback–Leibler divergence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4259204864501953 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C126691448 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4148097038269043 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2028919 |
| concepts[9].display_name | Magnitude (astronomy) |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.40927475690841675 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.40789204835891724 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.23875951766967773 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09290719032287598 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08690303564071655 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C121955636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[18].display_name | Accounting |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| concepts[20].id | https://openalex.org/C1276947 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[20].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/dimension |
| keywords[0].score | 0.7365677356719971 |
| keywords[0].display_name | Dimension (graph theory) |
| keywords[1].id | https://openalex.org/keywords/divergence |
| keywords[1].score | 0.7091478109359741 |
| keywords[1].display_name | Divergence (linguistics) |
| keywords[2].id | https://openalex.org/keywords/change-detection |
| keywords[2].score | 0.6383794546127319 |
| keywords[2].display_name | Change detection |
| keywords[3].id | https://openalex.org/keywords/gaussian |
| keywords[3].score | 0.6241662502288818 |
| keywords[3].display_name | Gaussian |
| keywords[4].id | https://openalex.org/keywords/variance |
| keywords[4].score | 0.6125423312187195 |
| keywords[4].display_name | Variance (accounting) |
| keywords[5].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[5].score | 0.5975393056869507 |
| keywords[5].display_name | Multivariate statistics |
| keywords[6].id | https://openalex.org/keywords/multivariate-normal-distribution |
| keywords[6].score | 0.4704667031764984 |
| keywords[6].display_name | Multivariate normal distribution |
| keywords[7].id | https://openalex.org/keywords/kullback–leibler-divergence |
| keywords[7].score | 0.45786717534065247 |
| keywords[7].display_name | Kullback–Leibler divergence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4259204864501953 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/magnitude |
| keywords[9].score | 0.4148097038269043 |
| keywords[9].display_name | Magnitude (astronomy) |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.40927475690841675 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.40789204835891724 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.23875951766967773 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.09290719032287598 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/combinatorics |
| keywords[14].score | 0.08690303564071655 |
| keywords[14].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1510.04850 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1510.04850 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1510.04850 |
| locations[1].id | pmh:oai:re.public.polimi.it:11311/1006305 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400312 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Virtual Community of Pathological Anatomy (University of Castilla La Mancha) |
| locations[1].source.host_organization | https://openalex.org/I79189158 |
| locations[1].source.host_organization_name | University of Castilla-La Mancha |
| locations[1].source.host_organization_lineage | https://openalex.org/I79189158 |
| locations[1].license | |
| locations[1].pdf_url | http://www.ijcai.org/Proceedings/16/Papers/197.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/11311/1006305 |
| locations[2].id | mag:2201315292 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/1510.04850.pdf |
| locations[3].id | doi:10.48550/arxiv.1510.04850 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1510.04850 |
| locations[4].id | mag:2963988108 |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306419999 |
| locations[4].source.issn | |
| locations[4].source.type | conference |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | International Joint Conference on Artificial Intelligence |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | International Joint Conference on Artificial Intelligence |
| locations[4].landing_page_url | http://dblp.uni-trier.de/db/conf/ijcai/ijcai2016.html#AlippiBCR16 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5005003786 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3819-0025 |
| authorships[0].author.display_name | Cesare Alippi |
| authorships[0].countries | CH, IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I57201433, https://openalex.org/I93860229 |
| authorships[0].affiliations[0].raw_affiliation_string | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy and Università della Svizzera Italiana, Lugano, Switzerland#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I57201433 |
| authorships[0].institutions[0].ror | https://ror.org/03c4atk17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I57201433 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | Università della Svizzera italiana |
| authorships[0].institutions[1].id | https://openalex.org/I93860229 |
| authorships[0].institutions[1].ror | https://ror.org/01nffqt88 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I93860229 |
| authorships[0].institutions[1].country_code | IT |
| authorships[0].institutions[1].display_name | Politecnico di Milano |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cesare Alippi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy and Università della Svizzera Italiana, Lugano, Switzerland#TAB# |
| authorships[1].author.id | https://openalex.org/A5006716646 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1650-3054 |
| authorships[1].author.display_name | Giacomo Boracchi |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I93860229 |
| authorships[1].affiliations[0].raw_affiliation_string | [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Milano, Italy] |
| authorships[1].institutions[0].id | https://openalex.org/I93860229 |
| authorships[1].institutions[0].ror | https://ror.org/01nffqt88 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I93860229 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | Politecnico di Milano |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Giacomo Boracchi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Milano, Italy] |
| authorships[2].author.id | https://openalex.org/A5068666949 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5455-5867 |
| authorships[2].author.display_name | Diego Carrera |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I93860229 |
| authorships[2].affiliations[0].raw_affiliation_string | [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Milano, Italy] |
| authorships[2].institutions[0].id | https://openalex.org/I93860229 |
| authorships[2].institutions[0].ror | https://ror.org/01nffqt88 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I93860229 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | Politecnico di Milano |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Diego Carrera |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Milano, Italy] |
| authorships[3].author.id | https://openalex.org/A5035547226 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7828-7687 |
| authorships[3].author.display_name | Manuel Roveri |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I93860229 |
| authorships[3].affiliations[0].raw_affiliation_string | [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Milano, Italy] |
| authorships[3].institutions[0].id | https://openalex.org/I93860229 |
| authorships[3].institutions[0].ror | https://ror.org/01nffqt88 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I93860229 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | Politecnico di Milano |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Manuel Roveri |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Milano, Italy] |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1510.04850 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12761 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Data Stream Mining Techniques |
| related_works | https://openalex.org/W2963988108, https://openalex.org/W3105735656, https://openalex.org/W2549351614, https://openalex.org/W2950083602, https://openalex.org/W2792218205, https://openalex.org/W2950299903, https://openalex.org/W2468037676, https://openalex.org/W3033655160, https://openalex.org/W2803613189, https://openalex.org/W2184500080, https://openalex.org/W2012189049, https://openalex.org/W3139636761, https://openalex.org/W3095589127, https://openalex.org/W3196829631, https://openalex.org/W2940245500, https://openalex.org/W1566228105, https://openalex.org/W3167003437, https://openalex.org/W3130602212, https://openalex.org/W2407228074, https://openalex.org/W2951581592 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:1510.04850 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1510.04850 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1510.04850 |
| primary_location.id | pmh:oai:arXiv.org:1510.04850 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1510.04850 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1510.04850 |
| publication_date | 2015-10-16 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2509972717, https://openalex.org/W2103679238, https://openalex.org/W2168806933, https://openalex.org/W2111876017, https://openalex.org/W1811624918, https://openalex.org/W2033286383, https://openalex.org/W2044574055, https://openalex.org/W2069701377, https://openalex.org/W2122951085, https://openalex.org/W2142841946, https://openalex.org/W2062989416, https://openalex.org/W2157103390, https://openalex.org/W2155974454, https://openalex.org/W2099419573, https://openalex.org/W1585854823, https://openalex.org/W2167845177, https://openalex.org/W3120740533, https://openalex.org/W2015887370, https://openalex.org/W2143991132, https://openalex.org/W2142851111, https://openalex.org/W2154579873, https://openalex.org/W2255333239, https://openalex.org/W2099111195 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 31, 111, 114 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.We | 0, 83, 148 |
| abstract_inverted_index.as | 129 |
| abstract_inverted_index.at | 174 |
| abstract_inverted_index.be | 92, 171 |
| abstract_inverted_index.by | 38, 95 |
| abstract_inverted_index.in | 7 |
| abstract_inverted_index.is | 76, 132 |
| abstract_inverted_index.of | 4, 42, 45, 61, 80, 88, 110, 113, 141 |
| abstract_inverted_index.on | 154, 165 |
| abstract_inverted_index.to | 20, 128, 134 |
| abstract_inverted_index.we | 11, 29, 126 |
| abstract_inverted_index.and | 10, 103, 106, 144, 157, 168 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.can | 91, 170 |
| abstract_inverted_index.due | 133 |
| abstract_inverted_index.has | 71 |
| abstract_inverted_index.its | 65 |
| abstract_inverted_index.low | 175 |
| abstract_inverted_index.our | 81 |
| abstract_inverted_index.the | 2, 13, 23, 40, 43, 46, 53, 59, 78, 86, 89, 96, 101, 108, 119, 135, 139, 142, 145, 151 |
| abstract_inverted_index.10). | 178 |
| abstract_inverted_index.This | 123 |
| abstract_inverted_index.also | 164 |
| abstract_inverted_index.been | 73 |
| abstract_inverted_index.data | 24, 68, 120, 146 |
| abstract_inverted_index.even | 173 |
| abstract_inverted_index.face | 21 |
| abstract_inverted_index.fact | 54 |
| abstract_inverted_index.goal | 79 |
| abstract_inverted_index.have | 19 |
| abstract_inverted_index.loss | 153 |
| abstract_inverted_index.over | 48 |
| abstract_inverted_index.pre- | 102 |
| abstract_inverted_index.show | 84 |
| abstract_inverted_index.that | 16, 55, 85, 107, 160, 169 |
| abstract_inverted_index.this | 56, 161 |
| abstract_inverted_index.time | 50 |
| abstract_inverted_index.when | 22, 67, 118 |
| abstract_inverted_index.(say, | 177 |
| abstract_inverted_index.frame | 60 |
| abstract_inverted_index.given | 115 |
| abstract_inverted_index.holds | 163 |
| abstract_inverted_index.never | 72 |
| abstract_inverted_index.refer | 127 |
| abstract_inverted_index.where | 34 |
| abstract_inverted_index.which | 75, 125 |
| abstract_inverted_index.change | 90, 112 |
| abstract_inverted_index.derive | 150 |
| abstract_inverted_index.indeed | 77 |
| abstract_inverted_index.linear | 136 |
| abstract_inverted_index.loss}, | 131 |
| abstract_inverted_index.paper. | 82 |
| abstract_inverted_index.scales | 70 |
| abstract_inverted_index.Despite | 52 |
| abstract_inverted_index.address | 1 |
| abstract_inverted_index.between | 100, 138 |
| abstract_inverted_index.changes | 6, 35 |
| abstract_inverted_index.general | 32 |
| abstract_inverted_index.harmful | 172 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.problem | 3, 162 |
| abstract_inverted_index.scales. | 26 |
| abstract_inverted_index.several | 62 |
| abstract_inverted_index.worsens | 117 |
| abstract_inverted_index.approach | 33, 57 |
| abstract_inverted_index.consider | 30 |
| abstract_inverted_index.datasets | 167 |
| abstract_inverted_index.detected | 37 |
| abstract_inverted_index.measured | 94 |
| abstract_inverted_index.methods, | 64 |
| abstract_inverted_index.problem, | 124 |
| abstract_inverted_index.variance | 140 |
| abstract_inverted_index.windows. | 51 |
| abstract_inverted_index.comparing | 39 |
| abstract_inverted_index.detecting | 5 |
| abstract_inverted_index.different | 49 |
| abstract_inverted_index.dimension | 25, 69, 121 |
| abstract_inverted_index.intrinsic | 14 |
| abstract_inverted_index.magnitude | 87, 116 |
| abstract_inverted_index.naturally | 93 |
| abstract_inverted_index.symmetric | 97 |
| abstract_inverted_index.datastream | 47 |
| abstract_inverted_index.difficulty | 15 |
| abstract_inverted_index.dimension. | 147 |
| abstract_inverted_index.divergence | 99 |
| abstract_inverted_index.increases. | 122 |
| abstract_inverted_index.real-world | 166 |
| abstract_inverted_index.constitutes | 58 |
| abstract_inverted_index.demonstrate | 159 |
| abstract_inverted_index.empirically | 158 |
| abstract_inverted_index.investigate | 12 |
| abstract_inverted_index.particular, | 28 |
| abstract_inverted_index.post-change | 104 |
| abstract_inverted_index.analytically | 149 |
| abstract_inverted_index.datastreams, | 9, 156 |
| abstract_inverted_index.distribution | 41 |
| abstract_inverted_index.multivariate | 8 |
| abstract_inverted_index.relationship | 137 |
| abstract_inverted_index.detectability | 109, 152 |
| abstract_inverted_index.effectiveness | 66 |
| abstract_inverted_index.investigated, | 74 |
| abstract_inverted_index.distributions, | 105 |
| abstract_inverted_index.log-likelihood | 44, 143 |
| abstract_inverted_index.data-dimensions | 176 |
| abstract_inverted_index.Kullback-Leibler | 98 |
| abstract_inverted_index.change-detection | 17, 63 |
| abstract_inverted_index.\emph{detectability | 130 |
| abstract_inverted_index.Gaussian-distributed | 155 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.05618734 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |