Channel and Spatial Relation-Propagation Network for RGB-Thermal Semantic Segmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.12534
RGB-Thermal (RGB-T) semantic segmentation has shown great potential in handling low-light conditions where RGB-based segmentation is hindered by poor RGB imaging quality. The key to RGB-T semantic segmentation is to effectively leverage the complementarity nature of RGB and thermal images. Most existing algorithms fuse RGB and thermal information in feature space via concatenation, element-wise summation, or attention operations in either unidirectional enhancement or bidirectional aggregation manners. However, they usually overlook the modality gap between RGB and thermal images during feature fusion, resulting in modality-specific information from one modality contaminating the other. In this paper, we propose a Channel and Spatial Relation-Propagation Network (CSRPNet) for RGB-T semantic segmentation, which propagates only modality-shared information across different modalities and alleviates the modality-specific information contamination issue. Our CSRPNet first performs relation-propagation in channel and spatial dimensions to capture the modality-shared features from the RGB and thermal features. CSRPNet then aggregates the modality-shared features captured from one modality with the input feature from the other modality to enhance the input feature without the contamination issue. While being fused together, the enhanced RGB and thermal features will be also fed into the subsequent RGB or thermal feature extraction layers for interactive feature fusion, respectively. We also introduce a dual-path cascaded feature refinement module that aggregates multi-layer features to produce two refined features for semantic and boundary prediction. Extensive experimental results demonstrate that CSRPNet performs favorably against state-of-the-art algorithms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.12534
- https://arxiv.org/pdf/2308.12534
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386185159
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386185159Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.12534Digital Object Identifier
- Title
-
Channel and Spatial Relation-Propagation Network for RGB-Thermal Semantic SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-24Full publication date if available
- Authors
-
Zikun Zhou, Shukun Wu, Zhu Guoqing, Hongpeng Wang, Zhenyu HeList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.12534Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.12534Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.12534Direct OA link when available
- Concepts
-
RGB color model, Artificial intelligence, Computer science, Segmentation, Feature (linguistics), Computer vision, Modality (human–computer interaction), Pattern recognition (psychology), Channel (broadcasting), Computer network, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386185159 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.12534 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.12534 |
| ids.openalex | https://openalex.org/W4386185159 |
| fwci | |
| type | preprint |
| title | Channel and Spatial Relation-Propagation Network for RGB-Thermal Semantic Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9954000115394592 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T12994 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9828000068664551 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Infrared Thermography in Medicine |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9685999751091003 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C82990744 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8674634695053101 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[0].display_name | RGB color model |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7024064660072327 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6793299913406372 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6608280539512634 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6334534287452698 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5648412108421326 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C2780226545 |
| concepts[6].level | 2 |
| concepts[6].score | 0.541810154914856 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[6].display_name | Modality (human–computer interaction) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4871949553489685 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C127162648 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4435952603816986 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[8].display_name | Channel (broadcasting) |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/rgb-color-model |
| keywords[0].score | 0.8674634695053101 |
| keywords[0].display_name | RGB color model |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7024064660072327 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6793299913406372 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.6608280539512634 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.6334534287452698 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5648412108421326 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/modality |
| keywords[6].score | 0.541810154914856 |
| keywords[6].display_name | Modality (human–computer interaction) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4871949553489685 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/channel |
| keywords[8].score | 0.4435952603816986 |
| keywords[8].display_name | Channel (broadcasting) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.12534 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.12534 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.12534 |
| locations[1].id | doi:10.48550/arxiv.2308.12534 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.12534 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5055330568 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2687-7762 |
| authorships[0].author.display_name | Zikun Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhou, Zikun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110764459 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shukun Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Shukun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101237872 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhu Guoqing |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhu, Guoqing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100608725 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4488-1375 |
| authorships[3].author.display_name | Hongpeng Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Hongpeng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100740564 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2546-8721 |
| authorships[4].author.display_name | Zhenyu He |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | He, Zhenyu |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.12534 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Channel and Spatial Relation-Propagation Network for RGB-Thermal Semantic Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9954000115394592 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W2385859805, https://openalex.org/W2530972254, https://openalex.org/W2374013449, https://openalex.org/W73545470, https://openalex.org/W2364381299, https://openalex.org/W2374430585, https://openalex.org/W3144423903, https://openalex.org/W2377397762, https://openalex.org/W2793967660, https://openalex.org/W2361654993 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.12534 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.12534 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.12534 |
| primary_location.id | pmh:oai:arXiv.org:2308.12534 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.12534 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.12534 |
| publication_date | 2023-08-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 96, 201 |
| abstract_inverted_index.In | 91 |
| abstract_inverted_index.We | 198 |
| abstract_inverted_index.be | 181 |
| abstract_inverted_index.by | 17 |
| abstract_inverted_index.in | 8, 48, 58, 82, 127 |
| abstract_inverted_index.is | 15, 28 |
| abstract_inverted_index.of | 35 |
| abstract_inverted_index.or | 55, 62, 188 |
| abstract_inverted_index.to | 24, 29, 132, 161, 211 |
| abstract_inverted_index.we | 94 |
| abstract_inverted_index.Our | 122 |
| abstract_inverted_index.RGB | 19, 36, 44, 74, 139, 176, 187 |
| abstract_inverted_index.The | 22 |
| abstract_inverted_index.and | 37, 45, 75, 98, 115, 129, 140, 177, 218 |
| abstract_inverted_index.fed | 183 |
| abstract_inverted_index.for | 103, 193, 216 |
| abstract_inverted_index.gap | 72 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.key | 23 |
| abstract_inverted_index.one | 86, 151 |
| abstract_inverted_index.the | 32, 70, 89, 117, 134, 138, 146, 154, 158, 163, 167, 174, 185 |
| abstract_inverted_index.two | 213 |
| abstract_inverted_index.via | 51 |
| abstract_inverted_index.Most | 40 |
| abstract_inverted_index.also | 182, 199 |
| abstract_inverted_index.from | 85, 137, 150, 157 |
| abstract_inverted_index.fuse | 43 |
| abstract_inverted_index.into | 184 |
| abstract_inverted_index.only | 109 |
| abstract_inverted_index.poor | 18 |
| abstract_inverted_index.that | 207, 225 |
| abstract_inverted_index.then | 144 |
| abstract_inverted_index.they | 67 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.will | 180 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.RGB-T | 25, 104 |
| abstract_inverted_index.While | 170 |
| abstract_inverted_index.being | 171 |
| abstract_inverted_index.first | 124 |
| abstract_inverted_index.fused | 172 |
| abstract_inverted_index.great | 6 |
| abstract_inverted_index.input | 155, 164 |
| abstract_inverted_index.other | 159 |
| abstract_inverted_index.shown | 5 |
| abstract_inverted_index.space | 50 |
| abstract_inverted_index.where | 12 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.across | 112 |
| abstract_inverted_index.during | 78 |
| abstract_inverted_index.either | 59 |
| abstract_inverted_index.images | 77 |
| abstract_inverted_index.issue. | 121, 169 |
| abstract_inverted_index.layers | 192 |
| abstract_inverted_index.module | 206 |
| abstract_inverted_index.nature | 34 |
| abstract_inverted_index.other. | 90 |
| abstract_inverted_index.paper, | 93 |
| abstract_inverted_index.(RGB-T) | 1 |
| abstract_inverted_index.CSRPNet | 123, 143, 226 |
| abstract_inverted_index.Channel | 97 |
| abstract_inverted_index.Network | 101 |
| abstract_inverted_index.Spatial | 99 |
| abstract_inverted_index.against | 229 |
| abstract_inverted_index.between | 73 |
| abstract_inverted_index.capture | 133 |
| abstract_inverted_index.channel | 128 |
| abstract_inverted_index.enhance | 162 |
| abstract_inverted_index.feature | 49, 79, 156, 165, 190, 195, 204 |
| abstract_inverted_index.fusion, | 80, 196 |
| abstract_inverted_index.images. | 39 |
| abstract_inverted_index.imaging | 20 |
| abstract_inverted_index.produce | 212 |
| abstract_inverted_index.propose | 95 |
| abstract_inverted_index.refined | 214 |
| abstract_inverted_index.results | 223 |
| abstract_inverted_index.spatial | 130 |
| abstract_inverted_index.thermal | 38, 46, 76, 141, 178, 189 |
| abstract_inverted_index.usually | 68 |
| abstract_inverted_index.without | 166 |
| abstract_inverted_index.However, | 66 |
| abstract_inverted_index.boundary | 219 |
| abstract_inverted_index.captured | 149 |
| abstract_inverted_index.cascaded | 203 |
| abstract_inverted_index.enhanced | 175 |
| abstract_inverted_index.existing | 41 |
| abstract_inverted_index.features | 136, 148, 179, 210, 215 |
| abstract_inverted_index.handling | 9 |
| abstract_inverted_index.hindered | 16 |
| abstract_inverted_index.leverage | 31 |
| abstract_inverted_index.manners. | 65 |
| abstract_inverted_index.modality | 71, 87, 152, 160 |
| abstract_inverted_index.overlook | 69 |
| abstract_inverted_index.performs | 125, 227 |
| abstract_inverted_index.quality. | 21 |
| abstract_inverted_index.semantic | 2, 26, 105, 217 |
| abstract_inverted_index.(CSRPNet) | 102 |
| abstract_inverted_index.Extensive | 221 |
| abstract_inverted_index.RGB-based | 13 |
| abstract_inverted_index.attention | 56 |
| abstract_inverted_index.different | 113 |
| abstract_inverted_index.dual-path | 202 |
| abstract_inverted_index.favorably | 228 |
| abstract_inverted_index.features. | 142 |
| abstract_inverted_index.introduce | 200 |
| abstract_inverted_index.low-light | 10 |
| abstract_inverted_index.potential | 7 |
| abstract_inverted_index.resulting | 81 |
| abstract_inverted_index.together, | 173 |
| abstract_inverted_index.aggregates | 145, 208 |
| abstract_inverted_index.algorithms | 42 |
| abstract_inverted_index.alleviates | 116 |
| abstract_inverted_index.conditions | 11 |
| abstract_inverted_index.dimensions | 131 |
| abstract_inverted_index.extraction | 191 |
| abstract_inverted_index.modalities | 114 |
| abstract_inverted_index.operations | 57 |
| abstract_inverted_index.propagates | 108 |
| abstract_inverted_index.refinement | 205 |
| abstract_inverted_index.subsequent | 186 |
| abstract_inverted_index.summation, | 54 |
| abstract_inverted_index.RGB-Thermal | 0 |
| abstract_inverted_index.aggregation | 64 |
| abstract_inverted_index.algorithms. | 231 |
| abstract_inverted_index.demonstrate | 224 |
| abstract_inverted_index.effectively | 30 |
| abstract_inverted_index.enhancement | 61 |
| abstract_inverted_index.information | 47, 84, 111, 119 |
| abstract_inverted_index.interactive | 194 |
| abstract_inverted_index.multi-layer | 209 |
| abstract_inverted_index.prediction. | 220 |
| abstract_inverted_index.element-wise | 53 |
| abstract_inverted_index.experimental | 222 |
| abstract_inverted_index.segmentation | 3, 14, 27 |
| abstract_inverted_index.bidirectional | 63 |
| abstract_inverted_index.contaminating | 88 |
| abstract_inverted_index.contamination | 120, 168 |
| abstract_inverted_index.respectively. | 197 |
| abstract_inverted_index.segmentation, | 106 |
| abstract_inverted_index.concatenation, | 52 |
| abstract_inverted_index.unidirectional | 60 |
| abstract_inverted_index.complementarity | 33 |
| abstract_inverted_index.modality-shared | 110, 135, 147 |
| abstract_inverted_index.state-of-the-art | 230 |
| abstract_inverted_index.modality-specific | 83, 118 |
| abstract_inverted_index.Relation-Propagation | 100 |
| abstract_inverted_index.relation-propagation | 126 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |