Channel-Aware Vector Quantization for Robust Semantic Communication on Discrete Channels Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.18604
Deep learning-based semantic communication has largely relied on analog or semi-digital transmission, which limits compatibility with modern digital communication infrastructures. Recent studies have employed vector quantization (VQ) to enable discrete semantic transmission, yet existing methods neglect channel state information during codebook optimization, leading to suboptimal robustness. To bridge this gap, we propose a channel-aware vector quantization (CAVQ) algorithm within a joint source-channel coding (JSCC) framework, termed VQJSCC, established on a discrete memoryless channel. In this framework, semantic features are discretized and directly mapped to modulation constellation symbols, while CAVQ integrates channel transition probabilities into the quantization process, aligning easily confused symbols with semantically similar codewords. A multi-codebook alignment mechanism is further introduced to handle mismatches between codebook order and modulation order by decomposing the transmission stream into multiple independently optimized subchannels. Experimental results demonstrate that VQJSCC effectively mitigates the digital cliff effect, achieves superior reconstruction quality across various modulation schemes, and outperforms state-of-the-art digital semantic communication baselines in both robustness and efficiency.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.18604
- https://arxiv.org/pdf/2510.18604
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416056744
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416056744Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.18604Digital Object Identifier
- Title
-
Channel-Aware Vector Quantization for Robust Semantic Communication on Discrete ChannelsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-21Full publication date if available
- Authors
-
Zian Meng, Qiang Li, W.H. Wilson Tang, Mengyi Yan, Xiaohu GeList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.18604Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.18604Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.18604Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416056744 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.18604 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.18604 |
| ids.openalex | https://openalex.org/W4416056744 |
| fwci | |
| type | preprint |
| title | Channel-Aware Vector Quantization for Robust Semantic Communication on Discrete Channels |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.18604 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.18604 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.18604 |
| locations[1].id | doi:10.48550/arxiv.2510.18604 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.18604 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102629811 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zian Meng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Meng, Zian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114221508 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qiang Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Qiang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5035023430 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8335-735X |
| authorships[2].author.display_name | W.H. Wilson Tang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tang, Wenqian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5002103818 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mengyi Yan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yan, Mingdie |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057308968 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3204-5241 |
| authorships[4].author.display_name | Xiaohu Ge |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ge, Xiaohu |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.18604 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | Channel-Aware Vector Quantization for Robust Semantic Communication on Discrete Channels |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:37:17.876367 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.18604 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.18604 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.18604 |
| primary_location.id | pmh:oai:arXiv.org:2510.18604 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.18604 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.18604 |
| publication_date | 2025-10-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 105 |
| abstract_inverted_index.a | 52, 59, 69 |
| abstract_inverted_index.In | 73 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.by | 121 |
| abstract_inverted_index.in | 157 |
| abstract_inverted_index.is | 109 |
| abstract_inverted_index.on | 7, 68 |
| abstract_inverted_index.or | 9 |
| abstract_inverted_index.to | 27, 43, 83, 112 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.and | 80, 118, 150, 160 |
| abstract_inverted_index.are | 78 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.the | 94, 123, 138 |
| abstract_inverted_index.yet | 32 |
| abstract_inverted_index.(VQ) | 26 |
| abstract_inverted_index.CAVQ | 88 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.both | 158 |
| abstract_inverted_index.gap, | 49 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.into | 93, 126 |
| abstract_inverted_index.that | 134 |
| abstract_inverted_index.this | 48, 74 |
| abstract_inverted_index.with | 15, 101 |
| abstract_inverted_index.cliff | 140 |
| abstract_inverted_index.joint | 60 |
| abstract_inverted_index.order | 117, 120 |
| abstract_inverted_index.state | 37 |
| abstract_inverted_index.which | 12 |
| abstract_inverted_index.while | 87 |
| abstract_inverted_index.(CAVQ) | 56 |
| abstract_inverted_index.(JSCC) | 63 |
| abstract_inverted_index.Recent | 20 |
| abstract_inverted_index.VQJSCC | 135 |
| abstract_inverted_index.across | 146 |
| abstract_inverted_index.analog | 8 |
| abstract_inverted_index.bridge | 47 |
| abstract_inverted_index.coding | 62 |
| abstract_inverted_index.during | 39 |
| abstract_inverted_index.easily | 98 |
| abstract_inverted_index.enable | 28 |
| abstract_inverted_index.handle | 113 |
| abstract_inverted_index.limits | 13 |
| abstract_inverted_index.mapped | 82 |
| abstract_inverted_index.modern | 16 |
| abstract_inverted_index.relied | 6 |
| abstract_inverted_index.stream | 125 |
| abstract_inverted_index.termed | 65 |
| abstract_inverted_index.vector | 24, 54 |
| abstract_inverted_index.within | 58 |
| abstract_inverted_index.VQJSCC, | 66 |
| abstract_inverted_index.between | 115 |
| abstract_inverted_index.channel | 36, 90 |
| abstract_inverted_index.digital | 17, 139, 153 |
| abstract_inverted_index.effect, | 141 |
| abstract_inverted_index.further | 110 |
| abstract_inverted_index.largely | 5 |
| abstract_inverted_index.leading | 42 |
| abstract_inverted_index.methods | 34 |
| abstract_inverted_index.neglect | 35 |
| abstract_inverted_index.propose | 51 |
| abstract_inverted_index.quality | 145 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.similar | 103 |
| abstract_inverted_index.studies | 21 |
| abstract_inverted_index.symbols | 100 |
| abstract_inverted_index.various | 147 |
| abstract_inverted_index.achieves | 142 |
| abstract_inverted_index.aligning | 97 |
| abstract_inverted_index.channel. | 72 |
| abstract_inverted_index.codebook | 40, 116 |
| abstract_inverted_index.confused | 99 |
| abstract_inverted_index.directly | 81 |
| abstract_inverted_index.discrete | 29, 70 |
| abstract_inverted_index.employed | 23 |
| abstract_inverted_index.existing | 33 |
| abstract_inverted_index.features | 77 |
| abstract_inverted_index.multiple | 127 |
| abstract_inverted_index.process, | 96 |
| abstract_inverted_index.schemes, | 149 |
| abstract_inverted_index.semantic | 2, 30, 76, 154 |
| abstract_inverted_index.superior | 143 |
| abstract_inverted_index.symbols, | 86 |
| abstract_inverted_index.algorithm | 57 |
| abstract_inverted_index.alignment | 107 |
| abstract_inverted_index.baselines | 156 |
| abstract_inverted_index.mechanism | 108 |
| abstract_inverted_index.mitigates | 137 |
| abstract_inverted_index.optimized | 129 |
| abstract_inverted_index.codewords. | 104 |
| abstract_inverted_index.framework, | 64, 75 |
| abstract_inverted_index.integrates | 89 |
| abstract_inverted_index.introduced | 111 |
| abstract_inverted_index.memoryless | 71 |
| abstract_inverted_index.mismatches | 114 |
| abstract_inverted_index.modulation | 84, 119, 148 |
| abstract_inverted_index.robustness | 159 |
| abstract_inverted_index.suboptimal | 44 |
| abstract_inverted_index.transition | 91 |
| abstract_inverted_index.decomposing | 122 |
| abstract_inverted_index.demonstrate | 133 |
| abstract_inverted_index.discretized | 79 |
| abstract_inverted_index.effectively | 136 |
| abstract_inverted_index.efficiency. | 161 |
| abstract_inverted_index.established | 67 |
| abstract_inverted_index.information | 38 |
| abstract_inverted_index.outperforms | 151 |
| abstract_inverted_index.robustness. | 45 |
| abstract_inverted_index.Experimental | 131 |
| abstract_inverted_index.quantization | 25, 55, 95 |
| abstract_inverted_index.semantically | 102 |
| abstract_inverted_index.semi-digital | 10 |
| abstract_inverted_index.subchannels. | 130 |
| abstract_inverted_index.transmission | 124 |
| abstract_inverted_index.channel-aware | 53 |
| abstract_inverted_index.communication | 3, 18, 155 |
| abstract_inverted_index.compatibility | 14 |
| abstract_inverted_index.constellation | 85 |
| abstract_inverted_index.independently | 128 |
| abstract_inverted_index.optimization, | 41 |
| abstract_inverted_index.probabilities | 92 |
| abstract_inverted_index.transmission, | 11, 31 |
| abstract_inverted_index.learning-based | 1 |
| abstract_inverted_index.multi-codebook | 106 |
| abstract_inverted_index.reconstruction | 144 |
| abstract_inverted_index.source-channel | 61 |
| abstract_inverted_index.infrastructures. | 19 |
| abstract_inverted_index.state-of-the-art | 152 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |