Channel Boosted CNN-Transformer-based Multi-Level and Multi-Scale Nuclei Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.19186
Accurate nuclei segmentation is an essential foundation for various applications in computational pathology, including cancer diagnosis and treatment planning. Even slight variations in nuclei representations can significantly impact these downstream tasks. However, achieving accurate segmentation remains challenging due to factors like clustered nuclei, high intra-class variability in size and shape, resemblance to other cells, and color or contrast variations between nuclei and background. Despite the extensive utilization of Convolutional Neural Networks (CNNs) in medical image segmentation, they may have trouble capturing long-range dependencies crucial for accurate nuclei delineation. Transformers address this limitation but might miss essential low-level features. To overcome these limitations, we utilized CNN-Transformer-based techniques for nuclei segmentation in H&E stained histology images. In this work, we proposed two CNN-Transformer architectures, Nuclei Hybrid Vision Transformer (NucleiHVT) and Channel Boosted Nuclei Hybrid Vision Transformer (CB-NucleiHVT), that leverage the strengths of both CNNs and Transformers to effectively learn nuclei boundaries in multi-organ histology images. The first architecture, NucleiHVT is inspired by the UNet architecture and incorporates the dual attention mechanism to capture both multi-level and multi-scale context effectively. The CB-NucleiHVT network, on the other hand, utilizes the concept of channel boosting to learn diverse feature spaces, enhancing the model's ability to distinguish subtle variations in nuclei characteristics. Detailed evaluation of two medical image segmentation datasets shows that the proposed architectures outperform existing CNN-based, Transformer-based, and hybrid methods. The proposed networks demonstrated effective results both in terms of quantitative metrics, and qualitative visual assessment.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.19186
- https://arxiv.org/pdf/2407.19186
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401201474
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401201474Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.19186Digital Object Identifier
- Title
-
Channel Boosted CNN-Transformer-based Multi-Level and Multi-Scale Nuclei SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-27Full publication date if available
- Authors
-
Zunaira Rauf, Abdul Rehman Khan, Asifullah KhanList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.19186Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.19186Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.19186Direct OA link when available
- Concepts
-
Segmentation, Transformer, Computer science, Scale (ratio), Artificial intelligence, Pattern recognition (psychology), Electrical engineering, Engineering, Cartography, Geography, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401201474 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.19186 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.19186 |
| ids.openalex | https://openalex.org/W4401201474 |
| fwci | |
| type | preprint |
| title | Channel Boosted CNN-Transformer-based Multi-Level and Multi-Scale Nuclei Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11949 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.6618000268936157 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3108 |
| topics[0].subfield.display_name | Radiation |
| topics[0].display_name | Nuclear Physics and Applications |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.5734000205993652 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6117269992828369 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5369254350662231 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5005629062652588 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4112166166305542 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.39336249232292175 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.34278595447540283 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119599485 |
| concepts[6].level | 1 |
| concepts[6].score | 0.24059507250785828 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[6].display_name | Electrical engineering |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.14656409621238708 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C58640448 |
| concepts[8].level | 1 |
| concepts[8].score | 0.14530500769615173 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[8].display_name | Cartography |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11206194758415222 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.07399612665176392 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6117269992828369 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.5369254350662231 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5005629062652588 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.4112166166305542 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.39336249232292175 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.34278595447540283 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/electrical-engineering |
| keywords[6].score | 0.24059507250785828 |
| keywords[6].display_name | Electrical engineering |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.14656409621238708 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/cartography |
| keywords[8].score | 0.14530500769615173 |
| keywords[8].display_name | Cartography |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.11206194758415222 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/voltage |
| keywords[10].score | 0.07399612665176392 |
| keywords[10].display_name | Voltage |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.19186 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.19186 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.19186 |
| locations[1].id | doi:10.48550/arxiv.2407.19186 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.19186 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089371801 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zunaira Rauf |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rauf, Zunaira |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081251185 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8402-6539 |
| authorships[1].author.display_name | Abdul Rehman Khan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khan, Abdul Rehman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083112369 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2039-5305 |
| authorships[2].author.display_name | Asifullah Khan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Khan, Asifullah |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.19186 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-08-01T00:00:00 |
| display_name | Channel Boosted CNN-Transformer-based Multi-Level and Multi-Scale Nuclei Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11949 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.6618000268936157 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3108 |
| primary_topic.subfield.display_name | Radiation |
| primary_topic.display_name | Nuclear Physics and Applications |
| related_works | https://openalex.org/W4379231730, https://openalex.org/W4389858081, https://openalex.org/W2501551404, https://openalex.org/W4385583601, https://openalex.org/W4298131179, https://openalex.org/W2113201962, https://openalex.org/W4395685956, https://openalex.org/W2799953226, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.19186 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.19186 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.19186 |
| primary_location.id | pmh:oai:arXiv.org:2407.19186 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.19186 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.19186 |
| publication_date | 2024-07-27 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.In | 114 |
| abstract_inverted_index.To | 98 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.by | 159 |
| abstract_inverted_index.in | 10, 22, 46, 72, 109, 149, 203, 233 |
| abstract_inverted_index.is | 3, 157 |
| abstract_inverted_index.of | 67, 139, 187, 208, 235 |
| abstract_inverted_index.on | 180 |
| abstract_inverted_index.or | 56 |
| abstract_inverted_index.to | 38, 51, 144, 169, 190, 199 |
| abstract_inverted_index.we | 102, 117 |
| abstract_inverted_index.The | 153, 177, 226 |
| abstract_inverted_index.and | 16, 48, 54, 61, 127, 142, 163, 173, 223, 238 |
| abstract_inverted_index.but | 92 |
| abstract_inverted_index.can | 25 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 7, 84, 106 |
| abstract_inverted_index.may | 77 |
| abstract_inverted_index.the | 64, 137, 160, 165, 181, 185, 196, 216 |
| abstract_inverted_index.two | 119, 209 |
| abstract_inverted_index.CNNs | 141 |
| abstract_inverted_index.Even | 19 |
| abstract_inverted_index.UNet | 161 |
| abstract_inverted_index.both | 140, 171, 232 |
| abstract_inverted_index.dual | 166 |
| abstract_inverted_index.have | 78 |
| abstract_inverted_index.high | 43 |
| abstract_inverted_index.like | 40 |
| abstract_inverted_index.miss | 94 |
| abstract_inverted_index.size | 47 |
| abstract_inverted_index.that | 135, 215 |
| abstract_inverted_index.they | 76 |
| abstract_inverted_index.this | 90, 115 |
| abstract_inverted_index.color | 55 |
| abstract_inverted_index.first | 154 |
| abstract_inverted_index.hand, | 183 |
| abstract_inverted_index.image | 74, 211 |
| abstract_inverted_index.learn | 146, 191 |
| abstract_inverted_index.might | 93 |
| abstract_inverted_index.other | 52, 182 |
| abstract_inverted_index.shows | 214 |
| abstract_inverted_index.terms | 234 |
| abstract_inverted_index.these | 28, 100 |
| abstract_inverted_index.work, | 116 |
| abstract_inverted_index.(CNNs) | 71 |
| abstract_inverted_index.Hybrid | 123, 131 |
| abstract_inverted_index.Neural | 69 |
| abstract_inverted_index.Nuclei | 122, 130 |
| abstract_inverted_index.Vision | 124, 132 |
| abstract_inverted_index.cancer | 14 |
| abstract_inverted_index.cells, | 53 |
| abstract_inverted_index.hybrid | 224 |
| abstract_inverted_index.impact | 27 |
| abstract_inverted_index.nuclei | 1, 23, 60, 86, 107, 147, 204 |
| abstract_inverted_index.shape, | 49 |
| abstract_inverted_index.slight | 20 |
| abstract_inverted_index.subtle | 201 |
| abstract_inverted_index.tasks. | 30 |
| abstract_inverted_index.visual | 240 |
| abstract_inverted_index.Boosted | 129 |
| abstract_inverted_index.Channel | 128 |
| abstract_inverted_index.Despite | 63 |
| abstract_inverted_index.H&E | 110 |
| abstract_inverted_index.ability | 198 |
| abstract_inverted_index.address | 89 |
| abstract_inverted_index.between | 59 |
| abstract_inverted_index.capture | 170 |
| abstract_inverted_index.channel | 188 |
| abstract_inverted_index.concept | 186 |
| abstract_inverted_index.context | 175 |
| abstract_inverted_index.crucial | 83 |
| abstract_inverted_index.diverse | 192 |
| abstract_inverted_index.factors | 39 |
| abstract_inverted_index.feature | 193 |
| abstract_inverted_index.images. | 113, 152 |
| abstract_inverted_index.medical | 73, 210 |
| abstract_inverted_index.model's | 197 |
| abstract_inverted_index.nuclei, | 42 |
| abstract_inverted_index.remains | 35 |
| abstract_inverted_index.results | 231 |
| abstract_inverted_index.spaces, | 194 |
| abstract_inverted_index.stained | 111 |
| abstract_inverted_index.trouble | 79 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Detailed | 206 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.Networks | 70 |
| abstract_inverted_index.accurate | 33, 85 |
| abstract_inverted_index.boosting | 189 |
| abstract_inverted_index.contrast | 57 |
| abstract_inverted_index.datasets | 213 |
| abstract_inverted_index.existing | 220 |
| abstract_inverted_index.inspired | 158 |
| abstract_inverted_index.leverage | 136 |
| abstract_inverted_index.methods. | 225 |
| abstract_inverted_index.metrics, | 237 |
| abstract_inverted_index.network, | 179 |
| abstract_inverted_index.networks | 228 |
| abstract_inverted_index.overcome | 99 |
| abstract_inverted_index.proposed | 118, 217, 227 |
| abstract_inverted_index.utilized | 103 |
| abstract_inverted_index.utilizes | 184 |
| abstract_inverted_index.NucleiHVT | 156 |
| abstract_inverted_index.achieving | 32 |
| abstract_inverted_index.attention | 167 |
| abstract_inverted_index.capturing | 80 |
| abstract_inverted_index.clustered | 41 |
| abstract_inverted_index.diagnosis | 15 |
| abstract_inverted_index.effective | 230 |
| abstract_inverted_index.enhancing | 195 |
| abstract_inverted_index.essential | 5, 95 |
| abstract_inverted_index.extensive | 65 |
| abstract_inverted_index.features. | 97 |
| abstract_inverted_index.histology | 112, 151 |
| abstract_inverted_index.including | 13 |
| abstract_inverted_index.low-level | 96 |
| abstract_inverted_index.mechanism | 168 |
| abstract_inverted_index.planning. | 18 |
| abstract_inverted_index.strengths | 138 |
| abstract_inverted_index.treatment | 17 |
| abstract_inverted_index.CNN-based, | 221 |
| abstract_inverted_index.boundaries | 148 |
| abstract_inverted_index.downstream | 29 |
| abstract_inverted_index.evaluation | 207 |
| abstract_inverted_index.foundation | 6 |
| abstract_inverted_index.limitation | 91 |
| abstract_inverted_index.long-range | 81 |
| abstract_inverted_index.outperform | 219 |
| abstract_inverted_index.pathology, | 12 |
| abstract_inverted_index.techniques | 105 |
| abstract_inverted_index.variations | 21, 58, 202 |
| abstract_inverted_index.(NucleiHVT) | 126 |
| abstract_inverted_index.Transformer | 125, 133 |
| abstract_inverted_index.assessment. | 241 |
| abstract_inverted_index.background. | 62 |
| abstract_inverted_index.challenging | 36 |
| abstract_inverted_index.distinguish | 200 |
| abstract_inverted_index.effectively | 145 |
| abstract_inverted_index.intra-class | 44 |
| abstract_inverted_index.multi-level | 172 |
| abstract_inverted_index.multi-organ | 150 |
| abstract_inverted_index.multi-scale | 174 |
| abstract_inverted_index.qualitative | 239 |
| abstract_inverted_index.resemblance | 50 |
| abstract_inverted_index.utilization | 66 |
| abstract_inverted_index.variability | 45 |
| abstract_inverted_index.CB-NucleiHVT | 178 |
| abstract_inverted_index.Transformers | 88, 143 |
| abstract_inverted_index.applications | 9 |
| abstract_inverted_index.architecture | 162 |
| abstract_inverted_index.delineation. | 87 |
| abstract_inverted_index.demonstrated | 229 |
| abstract_inverted_index.dependencies | 82 |
| abstract_inverted_index.effectively. | 176 |
| abstract_inverted_index.incorporates | 164 |
| abstract_inverted_index.limitations, | 101 |
| abstract_inverted_index.quantitative | 236 |
| abstract_inverted_index.segmentation | 2, 34, 108, 212 |
| abstract_inverted_index.Convolutional | 68 |
| abstract_inverted_index.architecture, | 155 |
| abstract_inverted_index.architectures | 218 |
| abstract_inverted_index.computational | 11 |
| abstract_inverted_index.segmentation, | 75 |
| abstract_inverted_index.significantly | 26 |
| abstract_inverted_index.architectures, | 121 |
| abstract_inverted_index.(CB-NucleiHVT), | 134 |
| abstract_inverted_index.CNN-Transformer | 120 |
| abstract_inverted_index.representations | 24 |
| abstract_inverted_index.characteristics. | 205 |
| abstract_inverted_index.Transformer-based, | 222 |
| abstract_inverted_index.CNN-Transformer-based | 104 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |