Channel Division Based Multiple Classifiers Fusion for Emotion Recognition Using EEG signals Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1051/itmconf/20171107006
With the rapid development of computer technology, pervasive computing and wearable devices, EEG-based emotion recognition has gradually attracted much attention in affecting computing (AC) domain. In this paper, we propose an approach of emotion recognition using EEG signals based on the weighted fusion of multiple base classifiers. These base classifiers based on SVM are constructed using a channel division mechanism according to the neuropsychological theory that different brain areas are differ in processing intensity of emotional information. The outputs of channel base classifiers are integrated by a weighted fusion strategy which is based on the confidence estimation on each emotional label by each base classifier. The evaluation on the DEAP dataset shows that our proposed multiple classifiers fusion method outperforms individual channel base classifiers and the feature fusion method for EEG-based emotion recognition.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/itmconf/20171107006
- https://www.itm-conferences.org/articles/itmconf/pdf/2017/03/itmconf_ist2017_07006.pdf
- OA Status
- diamond
- Cited By
- 18
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2616882636
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2616882636Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/itmconf/20171107006Digital Object Identifier
- Title
-
Channel Division Based Multiple Classifiers Fusion for Emotion Recognition Using EEG signalsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Xian Li, Jianzhuo Yan, Jianhui ChenList of authors in order
- Landing page
-
https://doi.org/10.1051/itmconf/20171107006Publisher landing page
- PDF URL
-
https://www.itm-conferences.org/articles/itmconf/pdf/2017/03/itmconf_ist2017_07006.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.itm-conferences.org/articles/itmconf/pdf/2017/03/itmconf_ist2017_07006.pdfDirect OA link when available
- Concepts
-
Computer science, Pattern recognition (psychology), Artificial intelligence, Classifier (UML), Electroencephalography, Support vector machine, Emotion recognition, Random subspace method, Speech recognition, Fusion, Channel (broadcasting), Emotion classification, Division (mathematics), Machine learning, Psychology, Mathematics, Computer network, Linguistics, Arithmetic, Philosophy, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 2, 2021: 5, 2020: 4Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2616882636 |
|---|---|
| doi | https://doi.org/10.1051/itmconf/20171107006 |
| ids.doi | https://doi.org/10.1051/itmconf/20171107006 |
| ids.mag | 2616882636 |
| ids.openalex | https://openalex.org/W2616882636 |
| fwci | 1.34370264 |
| type | article |
| title | Channel Division Based Multiple Classifiers Fusion for Emotion Recognition Using EEG signals |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 07006 |
| biblio.first_page | 07006 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| topics[2].id | https://openalex.org/T11707 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.991100013256073 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1709 |
| topics[2].subfield.display_name | Human-Computer Interaction |
| topics[2].display_name | Gaze Tracking and Assistive Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7555288076400757 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6747164130210876 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.631732702255249 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5954675078392029 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C522805319 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5762634873390198 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[4].display_name | Electroencephalography |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5560417771339417 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C2777438025 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5362434387207031 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[6].display_name | Emotion recognition |
| concepts[7].id | https://openalex.org/C106135958 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5171798467636108 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7291993 |
| concepts[7].display_name | Random subspace method |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4971447288990021 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| concepts[9].id | https://openalex.org/C158525013 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46398118138313293 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[9].display_name | Fusion |
| concepts[10].id | https://openalex.org/C127162648 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4557208716869354 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[10].display_name | Channel (broadcasting) |
| concepts[11].id | https://openalex.org/C206310091 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45332661271095276 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q750859 |
| concepts[11].display_name | Emotion classification |
| concepts[12].id | https://openalex.org/C60798267 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4136635661125183 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1226939 |
| concepts[12].display_name | Division (mathematics) |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.36415043473243713 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09437158703804016 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08483713865280151 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C31258907 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[16].display_name | Computer network |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C94375191 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[18].display_name | Arithmetic |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C118552586 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[20].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7555288076400757 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.6747164130210876 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.631732702255249 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.5954675078392029 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/electroencephalography |
| keywords[4].score | 0.5762634873390198 |
| keywords[4].display_name | Electroencephalography |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.5560417771339417 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/emotion-recognition |
| keywords[6].score | 0.5362434387207031 |
| keywords[6].display_name | Emotion recognition |
| keywords[7].id | https://openalex.org/keywords/random-subspace-method |
| keywords[7].score | 0.5171798467636108 |
| keywords[7].display_name | Random subspace method |
| keywords[8].id | https://openalex.org/keywords/speech-recognition |
| keywords[8].score | 0.4971447288990021 |
| keywords[8].display_name | Speech recognition |
| keywords[9].id | https://openalex.org/keywords/fusion |
| keywords[9].score | 0.46398118138313293 |
| keywords[9].display_name | Fusion |
| keywords[10].id | https://openalex.org/keywords/channel |
| keywords[10].score | 0.4557208716869354 |
| keywords[10].display_name | Channel (broadcasting) |
| keywords[11].id | https://openalex.org/keywords/emotion-classification |
| keywords[11].score | 0.45332661271095276 |
| keywords[11].display_name | Emotion classification |
| keywords[12].id | https://openalex.org/keywords/division |
| keywords[12].score | 0.4136635661125183 |
| keywords[12].display_name | Division (mathematics) |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.36415043473243713 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/psychology |
| keywords[14].score | 0.09437158703804016 |
| keywords[14].display_name | Psychology |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.08483713865280151 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1051/itmconf/20171107006 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210171711 |
| locations[0].source.issn | 2271-2097, 2431-7578 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2271-2097 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ITM Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.itm-conferences.org/articles/itmconf/pdf/2017/03/itmconf_ist2017_07006.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ITM Web of Conferences |
| locations[0].landing_page_url | https://doi.org/10.1051/itmconf/20171107006 |
| locations[1].id | pmh:oai:edpsciences.org:dkey/10.1051/itmconf/20171107006 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400744 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Springer Link (Chiba Institute of Technology) |
| locations[1].source.host_organization | https://openalex.org/I8488066 |
| locations[1].source.host_organization_name | Chiba Institute of Technology |
| locations[1].source.host_organization_lineage | https://openalex.org/I8488066 |
| locations[1].license | |
| locations[1].pdf_url | https://www.itm-conferences.org/10.1051/itmconf/20171107006/pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | https://doi.org/10.1051/itmconf/20171107006 |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:doaj.org/article:95fbe562e6124147bda5e530ade92604 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | ITM Web of Conferences, Vol 11, p 07006 (2017) |
| locations[2].landing_page_url | https://doaj.org/article/95fbe562e6124147bda5e530ade92604 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100425999 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5714-3940 |
| authorships[0].author.display_name | Xian Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[1].raw_affiliation_string | Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing 100024, China |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xian Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing 100024, China, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[1].author.id | https://openalex.org/A5009346768 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9116-4769 |
| authorships[1].author.display_name | Jianzhuo Yan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[1].raw_affiliation_string | Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing 100024, China |
| authorships[1].institutions[0].id | https://openalex.org/I37796252 |
| authorships[1].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jian-Zhuo Yan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing 100024, China, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[2].author.id | https://openalex.org/A5100765306 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6501-9819 |
| authorships[2].author.display_name | Jianhui Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[2].affiliations[0].raw_affiliation_string | International WIC Institute, Beijing University of Technology, Beijing 100024, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I37796252 |
| authorships[2].affiliations[1].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I37796252 |
| authorships[2].affiliations[2].raw_affiliation_string | Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing 100024, China |
| authorships[2].institutions[0].id | https://openalex.org/I37796252 |
| authorships[2].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jian-Hui Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing 100024, China, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China, International WIC Institute, Beijing University of Technology, Beijing 100024, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.itm-conferences.org/articles/itmconf/pdf/2017/03/itmconf_ist2017_07006.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2017-06-05T00:00:00 |
| display_name | Channel Division Based Multiple Classifiers Fusion for Emotion Recognition Using EEG signals |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2160451891, https://openalex.org/W2041636156, https://openalex.org/W2149078746, https://openalex.org/W1987859285, https://openalex.org/W4242764575, https://openalex.org/W2556319748, https://openalex.org/W2293477903, https://openalex.org/W1982718731, https://openalex.org/W2124774371, https://openalex.org/W2087412438 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1051/itmconf/20171107006 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210171711 |
| best_oa_location.source.issn | 2271-2097, 2431-7578 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2271-2097 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ITM Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.itm-conferences.org/articles/itmconf/pdf/2017/03/itmconf_ist2017_07006.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ITM Web of Conferences |
| best_oa_location.landing_page_url | https://doi.org/10.1051/itmconf/20171107006 |
| primary_location.id | doi:10.1051/itmconf/20171107006 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210171711 |
| primary_location.source.issn | 2271-2097, 2431-7578 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2271-2097 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ITM Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.itm-conferences.org/articles/itmconf/pdf/2017/03/itmconf_ist2017_07006.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ITM Web of Conferences |
| primary_location.landing_page_url | https://doi.org/10.1051/itmconf/20171107006 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2061364328, https://openalex.org/W2170847139, https://openalex.org/W2085652821, https://openalex.org/W1765315678, https://openalex.org/W266504756, https://openalex.org/W1947251450, https://openalex.org/W1970727126, https://openalex.org/W2064770205, https://openalex.org/W1559675634, https://openalex.org/W2023739715, https://openalex.org/W2033395352, https://openalex.org/W2019608648, https://openalex.org/W2001097956, https://openalex.org/W2002055708, https://openalex.org/W2128495200, https://openalex.org/W3045385837, https://openalex.org/W2153635508, https://openalex.org/W2067583143, https://openalex.org/W2113142053, https://openalex.org/W2098330912, https://openalex.org/W2010490761, https://openalex.org/W1563088657, https://openalex.org/W2064149108 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 56, 86 |
| abstract_inverted_index.In | 25 |
| abstract_inverted_index.an | 30 |
| abstract_inverted_index.by | 85, 101 |
| abstract_inverted_index.in | 20, 71 |
| abstract_inverted_index.is | 91 |
| abstract_inverted_index.of | 4, 32, 43, 74, 79 |
| abstract_inverted_index.on | 39, 51, 93, 97, 107 |
| abstract_inverted_index.to | 61 |
| abstract_inverted_index.we | 28 |
| abstract_inverted_index.EEG | 36 |
| abstract_inverted_index.SVM | 52 |
| abstract_inverted_index.The | 77, 105 |
| abstract_inverted_index.and | 9, 124 |
| abstract_inverted_index.are | 53, 69, 83 |
| abstract_inverted_index.for | 129 |
| abstract_inverted_index.has | 15 |
| abstract_inverted_index.our | 113 |
| abstract_inverted_index.the | 1, 40, 62, 94, 108, 125 |
| abstract_inverted_index.(AC) | 23 |
| abstract_inverted_index.DEAP | 109 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.base | 45, 48, 81, 103, 122 |
| abstract_inverted_index.each | 98, 102 |
| abstract_inverted_index.much | 18 |
| abstract_inverted_index.that | 65, 112 |
| abstract_inverted_index.this | 26 |
| abstract_inverted_index.These | 47 |
| abstract_inverted_index.areas | 68 |
| abstract_inverted_index.based | 38, 50, 92 |
| abstract_inverted_index.brain | 67 |
| abstract_inverted_index.label | 100 |
| abstract_inverted_index.rapid | 2 |
| abstract_inverted_index.shows | 111 |
| abstract_inverted_index.using | 35, 55 |
| abstract_inverted_index.which | 90 |
| abstract_inverted_index.differ | 70 |
| abstract_inverted_index.fusion | 42, 88, 117, 127 |
| abstract_inverted_index.method | 118, 128 |
| abstract_inverted_index.paper, | 27 |
| abstract_inverted_index.theory | 64 |
| abstract_inverted_index.channel | 57, 80, 121 |
| abstract_inverted_index.dataset | 110 |
| abstract_inverted_index.domain. | 24 |
| abstract_inverted_index.emotion | 13, 33, 131 |
| abstract_inverted_index.feature | 126 |
| abstract_inverted_index.outputs | 78 |
| abstract_inverted_index.propose | 29 |
| abstract_inverted_index.signals | 37 |
| abstract_inverted_index.approach | 31 |
| abstract_inverted_index.computer | 5 |
| abstract_inverted_index.devices, | 11 |
| abstract_inverted_index.division | 58 |
| abstract_inverted_index.multiple | 44, 115 |
| abstract_inverted_index.proposed | 114 |
| abstract_inverted_index.strategy | 89 |
| abstract_inverted_index.wearable | 10 |
| abstract_inverted_index.weighted | 41, 87 |
| abstract_inverted_index.EEG-based | 12, 130 |
| abstract_inverted_index.according | 60 |
| abstract_inverted_index.affecting | 21 |
| abstract_inverted_index.attention | 19 |
| abstract_inverted_index.attracted | 17 |
| abstract_inverted_index.computing | 8, 22 |
| abstract_inverted_index.different | 66 |
| abstract_inverted_index.emotional | 75, 99 |
| abstract_inverted_index.gradually | 16 |
| abstract_inverted_index.intensity | 73 |
| abstract_inverted_index.mechanism | 59 |
| abstract_inverted_index.pervasive | 7 |
| abstract_inverted_index.confidence | 95 |
| abstract_inverted_index.estimation | 96 |
| abstract_inverted_index.evaluation | 106 |
| abstract_inverted_index.individual | 120 |
| abstract_inverted_index.integrated | 84 |
| abstract_inverted_index.processing | 72 |
| abstract_inverted_index.classifier. | 104 |
| abstract_inverted_index.classifiers | 49, 82, 116, 123 |
| abstract_inverted_index.constructed | 54 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.outperforms | 119 |
| abstract_inverted_index.recognition | 14, 34 |
| abstract_inverted_index.technology, | 6 |
| abstract_inverted_index.classifiers. | 46 |
| abstract_inverted_index.information. | 76 |
| abstract_inverted_index.recognition. | 132 |
| abstract_inverted_index.neuropsychological | 63 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.77424223 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |