Channel Estimation in mmWave Hybrid MIMO System via Off-Grid Dirichlet Kernels Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/globecom38437.2019.9013906
In this paper, we tackle channel estimation in millimeter-wave hybrid multiple-input multiple-output systems by considering off-grid effects. In particular, we assume that spatial parameters can take any value in the angular domain, and need not fall on predefined discretized angles. Instead of increasing the number of discretized points to combat off-grid effects, we use implicit Dirichlet kernel structure in the Fourier domain, which conventional compressed sensing methods do not use. We propose greedy low-complexity algorithms based on orthogonal matching pursuit (OMP); our core idea is to traverse the Dirichlet kernel peak using estimates of the discrete Fourier transform. We demonstrate the efficacy of our proposed algorithms compared to standard OMP reconstruction. Numerical results show that our proposed algorithms obtain smaller reconstruction errors when off-grid effects are accounted for.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/globecom38437.2019.9013906
- OA Status
- green
- References
- 18
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2957141087
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2957141087Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/globecom38437.2019.9013906Digital Object Identifier
- Title
-
Channel Estimation in mmWave Hybrid MIMO System via Off-Grid Dirichlet KernelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-01Full publication date if available
- Authors
-
Chethan Kumar Anjinappa, You Zhou, Yavuz Yapıcı, Dror Baron, İsmail GüvençList of authors in order
- Landing page
-
https://doi.org/10.1109/globecom38437.2019.9013906Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1907.04427Direct OA link when available
- Concepts
-
Matching pursuit, Discretization, Algorithm, Grid, Computer science, Traverse, Compressed sensing, Kernel (algebra), Discrete Fourier transform (general), Channel (broadcasting), Fourier transform, Mathematical optimization, Mathematics, Short-time Fourier transform, Telecommunications, Geometry, Fourier analysis, Mathematical analysis, Combinatorics, Geodesy, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2957141087 |
|---|---|
| doi | https://doi.org/10.1109/globecom38437.2019.9013906 |
| ids.doi | https://doi.org/10.48550/arxiv.1907.04427 |
| ids.mag | 2957141087 |
| ids.openalex | https://openalex.org/W2957141087 |
| fwci | 0.0 |
| type | preprint |
| title | Channel Estimation in mmWave Hybrid MIMO System via Off-Grid Dirichlet Kernels |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10936 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Millimeter-Wave Propagation and Modeling |
| topics[1].id | https://openalex.org/T11607 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Microwave and Dielectric Measurement Techniques |
| topics[2].id | https://openalex.org/T11739 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9977999925613403 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Microwave Imaging and Scattering Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C156872377 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7515110373497009 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6786281 |
| concepts[0].display_name | Matching pursuit |
| concepts[1].id | https://openalex.org/C73000952 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7316010594367981 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17007827 |
| concepts[1].display_name | Discretization |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6560918688774109 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C187691185 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6177628636360168 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[3].display_name | Grid |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5542252063751221 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C176809094 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5479748249053955 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q15401496 |
| concepts[5].display_name | Traverse |
| concepts[6].id | https://openalex.org/C124851039 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5215622782707214 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[6].display_name | Compressed sensing |
| concepts[7].id | https://openalex.org/C74193536 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5111971497535706 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[7].display_name | Kernel (algebra) |
| concepts[8].id | https://openalex.org/C57733114 |
| concepts[8].level | 5 |
| concepts[8].score | 0.4862267076969147 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1006032 |
| concepts[8].display_name | Discrete Fourier transform (general) |
| concepts[9].id | https://openalex.org/C127162648 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47038188576698303 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[9].display_name | Channel (broadcasting) |
| concepts[10].id | https://openalex.org/C102519508 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4545849561691284 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6520159 |
| concepts[10].display_name | Fourier transform |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36089766025543213 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3168131113052368 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C166386157 |
| concepts[13].level | 4 |
| concepts[13].score | 0.1871437430381775 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1477735 |
| concepts[13].display_name | Short-time Fourier transform |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.16314247250556946 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1374327838420868 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C203024314 |
| concepts[16].level | 3 |
| concepts[16].score | 0.1342054307460785 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1365258 |
| concepts[16].display_name | Fourier analysis |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.10522320866584778 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| concepts[19].id | https://openalex.org/C13280743 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[19].display_name | Geodesy |
| concepts[20].id | https://openalex.org/C205649164 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[20].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/matching-pursuit |
| keywords[0].score | 0.7515110373497009 |
| keywords[0].display_name | Matching pursuit |
| keywords[1].id | https://openalex.org/keywords/discretization |
| keywords[1].score | 0.7316010594367981 |
| keywords[1].display_name | Discretization |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.6560918688774109 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/grid |
| keywords[3].score | 0.6177628636360168 |
| keywords[3].display_name | Grid |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5542252063751221 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/traverse |
| keywords[5].score | 0.5479748249053955 |
| keywords[5].display_name | Traverse |
| keywords[6].id | https://openalex.org/keywords/compressed-sensing |
| keywords[6].score | 0.5215622782707214 |
| keywords[6].display_name | Compressed sensing |
| keywords[7].id | https://openalex.org/keywords/kernel |
| keywords[7].score | 0.5111971497535706 |
| keywords[7].display_name | Kernel (algebra) |
| keywords[8].id | https://openalex.org/keywords/discrete-fourier-transform |
| keywords[8].score | 0.4862267076969147 |
| keywords[8].display_name | Discrete Fourier transform (general) |
| keywords[9].id | https://openalex.org/keywords/channel |
| keywords[9].score | 0.47038188576698303 |
| keywords[9].display_name | Channel (broadcasting) |
| keywords[10].id | https://openalex.org/keywords/fourier-transform |
| keywords[10].score | 0.4545849561691284 |
| keywords[10].display_name | Fourier transform |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.36089766025543213 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.3168131113052368 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/short-time-fourier-transform |
| keywords[13].score | 0.1871437430381775 |
| keywords[13].display_name | Short-time Fourier transform |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.16314247250556946 |
| keywords[14].display_name | Telecommunications |
| keywords[15].id | https://openalex.org/keywords/geometry |
| keywords[15].score | 0.1374327838420868 |
| keywords[15].display_name | Geometry |
| keywords[16].id | https://openalex.org/keywords/fourier-analysis |
| keywords[16].score | 0.1342054307460785 |
| keywords[16].display_name | Fourier analysis |
| keywords[17].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[17].score | 0.10522320866584778 |
| keywords[17].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1109/globecom38437.2019.9013906 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2019 IEEE Global Communications Conference (GLOBECOM) |
| locations[0].landing_page_url | https://doi.org/10.1109/globecom38437.2019.9013906 |
| locations[1].id | pmh:oai:arXiv.org:1907.04427 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1907.04427 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1907.04427 |
| locations[2].id | mag:2957141087 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/1907.04427.pdf |
| locations[3].id | doi:10.48550/arxiv.1907.04427 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1907.04427 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5067213733 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0784-4498 |
| authorships[0].author.display_name | Chethan Kumar Anjinappa |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[0].affiliations[0].raw_affiliation_string | North Carolina State University , |
| authorships[0].institutions[0].id | https://openalex.org/I137902535 |
| authorships[0].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | North Carolina State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chethan Kumar Anjinappa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | North Carolina State University , |
| authorships[1].author.id | https://openalex.org/A5028977056 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5319-0934 |
| authorships[1].author.display_name | You Zhou |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[1].affiliations[0].raw_affiliation_string | North Carolina State University , |
| authorships[1].institutions[0].id | https://openalex.org/I137902535 |
| authorships[1].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | North Carolina State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | You Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | North Carolina State University , |
| authorships[2].author.id | https://openalex.org/A5037362490 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2184-5355 |
| authorships[2].author.display_name | Yavuz Yapıcı |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[2].affiliations[0].raw_affiliation_string | North Carolina State University , |
| authorships[2].institutions[0].id | https://openalex.org/I137902535 |
| authorships[2].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | North Carolina State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yavuz Yapici |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | North Carolina State University , |
| authorships[3].author.id | https://openalex.org/A5037316256 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6371-8496 |
| authorships[3].author.display_name | Dror Baron |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[3].affiliations[0].raw_affiliation_string | North Carolina State University , |
| authorships[3].institutions[0].id | https://openalex.org/I137902535 |
| authorships[3].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | North Carolina State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dror Baron |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | North Carolina State University , |
| authorships[4].author.id | https://openalex.org/A5016722903 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1387-6242 |
| authorships[4].author.display_name | İsmail Güvenç |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[4].affiliations[0].raw_affiliation_string | North Carolina State University , |
| authorships[4].institutions[0].id | https://openalex.org/I137902535 |
| authorships[4].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | North Carolina State University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ismail Guvenc |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | North Carolina State University , |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1907.04427 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Channel Estimation in mmWave Hybrid MIMO System via Off-Grid Dirichlet Kernels |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10936 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Millimeter-Wave Propagation and Modeling |
| related_works | https://openalex.org/W3009360862, https://openalex.org/W2995298469, https://openalex.org/W3003234710, https://openalex.org/W3133686476, https://openalex.org/W2727520011, https://openalex.org/W2781614435, https://openalex.org/W3161003272, https://openalex.org/W2608992147, https://openalex.org/W2557884216, https://openalex.org/W2994614842, https://openalex.org/W2784834179, https://openalex.org/W2547928567, https://openalex.org/W2889263244, https://openalex.org/W3184603866, https://openalex.org/W3195752840, https://openalex.org/W3171634494, https://openalex.org/W2972291720, https://openalex.org/W2956680063, https://openalex.org/W1906334979, https://openalex.org/W3125495337 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:1907.04427 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1907.04427 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1907.04427 |
| primary_location.id | doi:10.1109/globecom38437.2019.9013906 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2019 IEEE Global Communications Conference (GLOBECOM) |
| primary_location.landing_page_url | https://doi.org/10.1109/globecom38437.2019.9013906 |
| publication_date | 2019-12-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2139961842, https://openalex.org/W2810297269, https://openalex.org/W2739833327, https://openalex.org/W1991056455, https://openalex.org/W2962952148, https://openalex.org/W2964311703, https://openalex.org/W2528345145, https://openalex.org/W2120958902, https://openalex.org/W2887119789, https://openalex.org/W2510608419, https://openalex.org/W2921341714, https://openalex.org/W2128865660, https://openalex.org/W2339667469, https://openalex.org/W2848225903, https://openalex.org/W2565293665, https://openalex.org/W2195693430, https://openalex.org/W2195833401, https://openalex.org/W2127271355 |
| referenced_works_count | 18 |
| abstract_inverted_index.In | 0, 17 |
| abstract_inverted_index.We | 70, 98 |
| abstract_inverted_index.by | 13 |
| abstract_inverted_index.do | 67 |
| abstract_inverted_index.in | 7, 28, 58 |
| abstract_inverted_index.is | 84 |
| abstract_inverted_index.of | 41, 45, 93, 102 |
| abstract_inverted_index.on | 36, 76 |
| abstract_inverted_index.to | 48, 85, 107 |
| abstract_inverted_index.we | 3, 19, 52 |
| abstract_inverted_index.OMP | 109 |
| abstract_inverted_index.and | 32 |
| abstract_inverted_index.any | 26 |
| abstract_inverted_index.are | 125 |
| abstract_inverted_index.can | 24 |
| abstract_inverted_index.not | 34, 68 |
| abstract_inverted_index.our | 81, 103, 115 |
| abstract_inverted_index.the | 29, 43, 59, 87, 94, 100 |
| abstract_inverted_index.use | 53 |
| abstract_inverted_index.core | 82 |
| abstract_inverted_index.fall | 35 |
| abstract_inverted_index.for. | 127 |
| abstract_inverted_index.idea | 83 |
| abstract_inverted_index.need | 33 |
| abstract_inverted_index.peak | 90 |
| abstract_inverted_index.show | 113 |
| abstract_inverted_index.take | 25 |
| abstract_inverted_index.that | 21, 114 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.use. | 69 |
| abstract_inverted_index.when | 122 |
| abstract_inverted_index.based | 75 |
| abstract_inverted_index.using | 91 |
| abstract_inverted_index.value | 27 |
| abstract_inverted_index.which | 62 |
| abstract_inverted_index.(OMP); | 80 |
| abstract_inverted_index.assume | 20 |
| abstract_inverted_index.combat | 49 |
| abstract_inverted_index.errors | 121 |
| abstract_inverted_index.greedy | 72 |
| abstract_inverted_index.hybrid | 9 |
| abstract_inverted_index.kernel | 56, 89 |
| abstract_inverted_index.number | 44 |
| abstract_inverted_index.obtain | 118 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.points | 47 |
| abstract_inverted_index.tackle | 4 |
| abstract_inverted_index.Fourier | 60, 96 |
| abstract_inverted_index.Instead | 40 |
| abstract_inverted_index.angles. | 39 |
| abstract_inverted_index.angular | 30 |
| abstract_inverted_index.channel | 5 |
| abstract_inverted_index.domain, | 31, 61 |
| abstract_inverted_index.effects | 124 |
| abstract_inverted_index.methods | 66 |
| abstract_inverted_index.propose | 71 |
| abstract_inverted_index.pursuit | 79 |
| abstract_inverted_index.results | 112 |
| abstract_inverted_index.sensing | 65 |
| abstract_inverted_index.smaller | 119 |
| abstract_inverted_index.spatial | 22 |
| abstract_inverted_index.systems | 12 |
| abstract_inverted_index.compared | 106 |
| abstract_inverted_index.discrete | 95 |
| abstract_inverted_index.effects, | 51 |
| abstract_inverted_index.effects. | 16 |
| abstract_inverted_index.efficacy | 101 |
| abstract_inverted_index.implicit | 54 |
| abstract_inverted_index.matching | 78 |
| abstract_inverted_index.off-grid | 15, 50, 123 |
| abstract_inverted_index.proposed | 104, 116 |
| abstract_inverted_index.standard | 108 |
| abstract_inverted_index.traverse | 86 |
| abstract_inverted_index.Dirichlet | 55, 88 |
| abstract_inverted_index.Numerical | 111 |
| abstract_inverted_index.accounted | 126 |
| abstract_inverted_index.estimates | 92 |
| abstract_inverted_index.structure | 57 |
| abstract_inverted_index.algorithms | 74, 105, 117 |
| abstract_inverted_index.compressed | 64 |
| abstract_inverted_index.estimation | 6 |
| abstract_inverted_index.increasing | 42 |
| abstract_inverted_index.orthogonal | 77 |
| abstract_inverted_index.parameters | 23 |
| abstract_inverted_index.predefined | 37 |
| abstract_inverted_index.transform. | 97 |
| abstract_inverted_index.considering | 14 |
| abstract_inverted_index.demonstrate | 99 |
| abstract_inverted_index.discretized | 38, 46 |
| abstract_inverted_index.particular, | 18 |
| abstract_inverted_index.conventional | 63 |
| abstract_inverted_index.low-complexity | 73 |
| abstract_inverted_index.multiple-input | 10 |
| abstract_inverted_index.reconstruction | 120 |
| abstract_inverted_index.millimeter-wave | 8 |
| abstract_inverted_index.multiple-output | 11 |
| abstract_inverted_index.reconstruction. | 110 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.05512211 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |