Chaotic Equilibrium Optimizer-Based Green Communication With Deep Learning Enabled Load Prediction in Internet of Things Environment Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/access.2023.3345803
Currently, there is an emerging requirement for applications related to the Internet of Things (IoT). Though the capability of IoT applications is huge, there are frequent limitations namely energy optimization, heterogeneity of devices, memory, security, privacy, and load balancing (LB) that should be solved. Such constraints must be optimised to enhance the network’s efficiency. Hence, the core objective of this study was to formulate the intelligent-related cluster head (CH) selection method to establish green communication in IoT. Therefore, this study develops a chaotic equilibrium optimizer-based green communication with deep learning-enabled load prediction (CEOGC-DLLP) in the IoT environment. The study recognizes the emerging need for IoT applications and acknowledges the critical challenges, such as energy optimization, device heterogeneity, memory constraints, security, privacy, and load balancing, which are essential to enhancing the efficiency of IoT networks. The presented CEOGC-DLLP technique mainly accomplishes green communication via clustering and future load prediction processes. To do so, the presented CEOGC-DLLP model derives the CEOGC technique with a fitness function encompassing multiple parameters. In addition, the presented CEOGC-DLLP technique follows the deep belief network (DBN) model for the load prediction process, which helps to balance the load among the IoT devices for effective green communication. The experimental assessment of the CEOGC-DLLP technique is performed and the outcomes are investigated under different aspects. The comparison study represents the supremacy of the CEOGC-DLLP method compared to existing techniques with a maximum throughput of 64662 packets and minimum MSE of 0.2956.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2023.3345803
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10368015.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390075110
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390075110Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2023.3345803Digital Object Identifier
- Title
-
Chaotic Equilibrium Optimizer-Based Green Communication With Deep Learning Enabled Load Prediction in Internet of Things EnvironmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-21Full publication date if available
- Authors
-
Mohammed Aljebreen, Marwa Obayya, Hany Mahgoub, Saud S. Alotaibi, Abdullah Mohamed, Manar Ahmed HamzaList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2023.3345803Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10368015.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10368015.pdfDirect OA link when available
- Concepts
-
Computer science, Load balancing (electrical power), Network packet, Distributed computing, Cluster analysis, Chaotic, Efficient energy use, Internet of Things, Throughput, Process (computing), Artificial intelligence, Machine learning, Computer network, Wireless, Computer security, Grid, Operating system, Mathematics, Engineering, Electrical engineering, Telecommunications, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390075110 |
|---|---|
| doi | https://doi.org/10.1109/access.2023.3345803 |
| ids.doi | https://doi.org/10.1109/access.2023.3345803 |
| ids.openalex | https://openalex.org/W4390075110 |
| fwci | 1.31865688 |
| type | article |
| title | Chaotic Equilibrium Optimizer-Based Green Communication With Deep Learning Enabled Load Prediction in Internet of Things Environment |
| awards[0].id | https://openalex.org/G1824265929 |
| awards[0].funder_id | https://openalex.org/F4320322484 |
| awards[0].display_name | |
| awards[0].funder_award_id | (RSP2023R459) |
| awards[0].funder_display_name | Princess Nourah Bint Abdulrahman University |
| awards[1].id | https://openalex.org/G6597315042 |
| awards[1].funder_id | https://openalex.org/F4320324433 |
| awards[1].display_name | |
| awards[1].funder_award_id | (RGP2/95/44) |
| awards[1].funder_display_name | King Khalid University |
| awards[2].id | https://openalex.org/G188680697 |
| awards[2].funder_id | https://openalex.org/F4320311227 |
| awards[2].display_name | |
| awards[2].funder_award_id | (PSAU/2023/R/1444) |
| awards[2].funder_display_name | Prince Sattam bin Abdulaziz University |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 267 |
| biblio.first_page | 258 |
| topics[0].id | https://openalex.org/T10273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | IoT and Edge/Fog Computing |
| topics[1].id | https://openalex.org/T12079 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9937000274658203 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | IoT Networks and Protocols |
| topics[2].id | https://openalex.org/T11479 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9925000071525574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Smart Cities and Technologies |
| funders[0].id | https://openalex.org/F4320311227 |
| funders[0].ror | https://ror.org/04jt46d36 |
| funders[0].display_name | Prince Sattam bin Abdulaziz University |
| funders[1].id | https://openalex.org/F4320321145 |
| funders[1].ror | https://ror.org/02f81g417 |
| funders[1].display_name | King Saud University |
| funders[2].id | https://openalex.org/F4320322484 |
| funders[2].ror | https://ror.org/05b0cyh02 |
| funders[2].display_name | Princess Nourah Bint Abdulrahman University |
| funders[3].id | https://openalex.org/F4320324433 |
| funders[3].ror | https://ror.org/052kwzs30 |
| funders[3].display_name | King Khalid University |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8606971502304077 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C138959212 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5449631810188293 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1806783 |
| concepts[1].display_name | Load balancing (electrical power) |
| concepts[2].id | https://openalex.org/C158379750 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5422817468643188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q214111 |
| concepts[2].display_name | Network packet |
| concepts[3].id | https://openalex.org/C120314980 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5358774662017822 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[3].display_name | Distributed computing |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5243387818336487 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C2777052490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49460503458976746 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5072826 |
| concepts[5].display_name | Chaotic |
| concepts[6].id | https://openalex.org/C2742236 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4924341142177582 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q924713 |
| concepts[6].display_name | Efficient energy use |
| concepts[7].id | https://openalex.org/C81860439 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4892694652080536 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[7].display_name | Internet of Things |
| concepts[8].id | https://openalex.org/C157764524 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4591284692287445 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[8].display_name | Throughput |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.424858421087265 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.42209258675575256 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3779065012931824 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2567306160926819 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C555944384 |
| concepts[13].level | 2 |
| concepts[13].score | 0.24366825819015503 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[13].display_name | Wireless |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.17247283458709717 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| concepts[15].id | https://openalex.org/C187691185 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[15].display_name | Grid |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| concepts[19].id | https://openalex.org/C119599485 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[19].display_name | Electrical engineering |
| concepts[20].id | https://openalex.org/C76155785 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[20].display_name | Telecommunications |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8606971502304077 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/load-balancing |
| keywords[1].score | 0.5449631810188293 |
| keywords[1].display_name | Load balancing (electrical power) |
| keywords[2].id | https://openalex.org/keywords/network-packet |
| keywords[2].score | 0.5422817468643188 |
| keywords[2].display_name | Network packet |
| keywords[3].id | https://openalex.org/keywords/distributed-computing |
| keywords[3].score | 0.5358774662017822 |
| keywords[3].display_name | Distributed computing |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.5243387818336487 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/chaotic |
| keywords[5].score | 0.49460503458976746 |
| keywords[5].display_name | Chaotic |
| keywords[6].id | https://openalex.org/keywords/efficient-energy-use |
| keywords[6].score | 0.4924341142177582 |
| keywords[6].display_name | Efficient energy use |
| keywords[7].id | https://openalex.org/keywords/internet-of-things |
| keywords[7].score | 0.4892694652080536 |
| keywords[7].display_name | Internet of Things |
| keywords[8].id | https://openalex.org/keywords/throughput |
| keywords[8].score | 0.4591284692287445 |
| keywords[8].display_name | Throughput |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.424858421087265 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.42209258675575256 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3779065012931824 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/computer-network |
| keywords[12].score | 0.2567306160926819 |
| keywords[12].display_name | Computer network |
| keywords[13].id | https://openalex.org/keywords/wireless |
| keywords[13].score | 0.24366825819015503 |
| keywords[13].display_name | Wireless |
| keywords[14].id | https://openalex.org/keywords/computer-security |
| keywords[14].score | 0.17247283458709717 |
| keywords[14].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.1109/access.2023.3345803 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10368015.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2023.3345803 |
| locations[1].id | pmh:oai:doaj.org/article:bd954f6bb1224c81846fa1993413849b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 258-267 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/bd954f6bb1224c81846fa1993413849b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5025820678 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6295-733X |
| authorships[0].author.display_name | Mohammed Aljebreen |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I28022161 |
| authorships[0].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | King Saud University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohammed Aljebreen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5010863688 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3099-9567 |
| authorships[1].author.display_name | Marwa Obayya |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I106778892 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I106778892 |
| authorships[1].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marwa Obayya |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5078122976 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-1982-5851 |
| authorships[2].author.display_name | Hany Mahgoub |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Abha, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I82952536 |
| authorships[2].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Khalid University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hany Mahgoub |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Abha, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5090952442 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1082-513X |
| authorships[3].author.display_name | Saud S. Alotaibi |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I199693650 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Systems, College of Computing and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I199693650 |
| authorships[3].institutions[0].ror | https://ror.org/01xjqrm90 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I199693650 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Umm al-Qura University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Saud S. Alotaibi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Systems, College of Computing and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5109598022 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Abdullah Mohamed |
| authorships[4].countries | EG |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I186217134 |
| authorships[4].affiliations[0].raw_affiliation_string | Research Centre, Future University in Egypt, New Cairo, Egypt |
| authorships[4].institutions[0].id | https://openalex.org/I186217134 |
| authorships[4].institutions[0].ror | https://ror.org/03s8c2x09 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I186217134 |
| authorships[4].institutions[0].country_code | EG |
| authorships[4].institutions[0].display_name | Future University in Egypt |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Abdullah Mohamed |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Research Centre, Future University in Egypt, New Cairo, Egypt |
| authorships[5].author.id | https://openalex.org/A5072745905 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8743-1174 |
| authorships[5].author.display_name | Manar Ahmed Hamza |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I142608572 |
| authorships[5].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Manar Ahmed Hamza |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10368015.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Chaotic Equilibrium Optimizer-Based Green Communication With Deep Learning Enabled Load Prediction in Internet of Things Environment |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | IoT and Edge/Fog Computing |
| related_works | https://openalex.org/W4245926026, https://openalex.org/W4311097251, https://openalex.org/W2586548817, https://openalex.org/W2625093826, https://openalex.org/W4200598720, https://openalex.org/W2921026492, https://openalex.org/W4247463117, https://openalex.org/W4361251261, https://openalex.org/W3031181660, https://openalex.org/W4238100021 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2023.3345803 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10368015.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2023.3345803 |
| primary_location.id | doi:10.1109/access.2023.3345803 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10368015.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2023.3345803 |
| publication_date | 2023-12-21 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4316372442, https://openalex.org/W4360603030, https://openalex.org/W4301182775, https://openalex.org/W4307723706, https://openalex.org/W4319341509, https://openalex.org/W3204830335, https://openalex.org/W3000358215, https://openalex.org/W3144736582, https://openalex.org/W3002822968, https://openalex.org/W3025641346, https://openalex.org/W4213039750, https://openalex.org/W3103448395, https://openalex.org/W4211251390, https://openalex.org/W3197264389, https://openalex.org/W3186616731, https://openalex.org/W3020251297, https://openalex.org/W4285179218, https://openalex.org/W4321782540, https://openalex.org/W4376614056, https://openalex.org/W4362563595, https://openalex.org/W4389287925, https://openalex.org/W2985845430, https://openalex.org/W4294224722, https://openalex.org/W4205263132, https://openalex.org/W4293201474 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 81, 161, 231 |
| abstract_inverted_index.In | 167 |
| abstract_inverted_index.To | 149 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 112 |
| abstract_inverted_index.be | 42, 47 |
| abstract_inverted_index.do | 150 |
| abstract_inverted_index.in | 75, 93 |
| abstract_inverted_index.is | 2, 21, 206 |
| abstract_inverted_index.of | 12, 18, 31, 58, 131, 202, 222, 234, 240 |
| abstract_inverted_index.to | 9, 49, 62, 71, 127, 187, 227 |
| abstract_inverted_index.IoT | 19, 95, 104, 132, 193 |
| abstract_inverted_index.MSE | 239 |
| abstract_inverted_index.The | 97, 134, 199, 216 |
| abstract_inverted_index.and | 36, 106, 121, 144, 208, 237 |
| abstract_inverted_index.are | 24, 125, 211 |
| abstract_inverted_index.for | 6, 103, 180, 195 |
| abstract_inverted_index.so, | 151 |
| abstract_inverted_index.the | 10, 16, 51, 55, 64, 94, 100, 108, 129, 152, 157, 169, 174, 181, 189, 192, 203, 209, 220, 223 |
| abstract_inverted_index.via | 142 |
| abstract_inverted_index.was | 61 |
| abstract_inverted_index.(CH) | 68 |
| abstract_inverted_index.(LB) | 39 |
| abstract_inverted_index.IoT. | 76 |
| abstract_inverted_index.Such | 44 |
| abstract_inverted_index.core | 56 |
| abstract_inverted_index.deep | 88, 175 |
| abstract_inverted_index.head | 67 |
| abstract_inverted_index.load | 37, 90, 122, 146, 182, 190 |
| abstract_inverted_index.must | 46 |
| abstract_inverted_index.need | 102 |
| abstract_inverted_index.such | 111 |
| abstract_inverted_index.that | 40 |
| abstract_inverted_index.this | 59, 78 |
| abstract_inverted_index.with | 87, 160, 230 |
| abstract_inverted_index.(DBN) | 178 |
| abstract_inverted_index.64662 | 235 |
| abstract_inverted_index.CEOGC | 158 |
| abstract_inverted_index.among | 191 |
| abstract_inverted_index.green | 73, 85, 140, 197 |
| abstract_inverted_index.helps | 186 |
| abstract_inverted_index.huge, | 22 |
| abstract_inverted_index.model | 155, 179 |
| abstract_inverted_index.study | 60, 79, 98, 218 |
| abstract_inverted_index.there | 1, 23 |
| abstract_inverted_index.under | 213 |
| abstract_inverted_index.which | 124, 185 |
| abstract_inverted_index.(IoT). | 14 |
| abstract_inverted_index.Hence, | 54 |
| abstract_inverted_index.Things | 13 |
| abstract_inverted_index.Though | 15 |
| abstract_inverted_index.belief | 176 |
| abstract_inverted_index.device | 115 |
| abstract_inverted_index.energy | 28, 113 |
| abstract_inverted_index.future | 145 |
| abstract_inverted_index.mainly | 138 |
| abstract_inverted_index.memory | 117 |
| abstract_inverted_index.method | 70, 225 |
| abstract_inverted_index.namely | 27 |
| abstract_inverted_index.should | 41 |
| abstract_inverted_index.0.2956. | 241 |
| abstract_inverted_index.balance | 188 |
| abstract_inverted_index.chaotic | 82 |
| abstract_inverted_index.cluster | 66 |
| abstract_inverted_index.derives | 156 |
| abstract_inverted_index.devices | 194 |
| abstract_inverted_index.enhance | 50 |
| abstract_inverted_index.fitness | 162 |
| abstract_inverted_index.follows | 173 |
| abstract_inverted_index.maximum | 232 |
| abstract_inverted_index.memory, | 33 |
| abstract_inverted_index.minimum | 238 |
| abstract_inverted_index.network | 177 |
| abstract_inverted_index.packets | 236 |
| abstract_inverted_index.related | 8 |
| abstract_inverted_index.solved. | 43 |
| abstract_inverted_index.Internet | 11 |
| abstract_inverted_index.aspects. | 215 |
| abstract_inverted_index.compared | 226 |
| abstract_inverted_index.critical | 109 |
| abstract_inverted_index.develops | 80 |
| abstract_inverted_index.devices, | 32 |
| abstract_inverted_index.emerging | 4, 101 |
| abstract_inverted_index.existing | 228 |
| abstract_inverted_index.frequent | 25 |
| abstract_inverted_index.function | 163 |
| abstract_inverted_index.multiple | 165 |
| abstract_inverted_index.outcomes | 210 |
| abstract_inverted_index.privacy, | 35, 120 |
| abstract_inverted_index.process, | 184 |
| abstract_inverted_index.addition, | 168 |
| abstract_inverted_index.balancing | 38 |
| abstract_inverted_index.different | 214 |
| abstract_inverted_index.effective | 196 |
| abstract_inverted_index.enhancing | 128 |
| abstract_inverted_index.essential | 126 |
| abstract_inverted_index.establish | 72 |
| abstract_inverted_index.formulate | 63 |
| abstract_inverted_index.networks. | 133 |
| abstract_inverted_index.objective | 57 |
| abstract_inverted_index.optimised | 48 |
| abstract_inverted_index.performed | 207 |
| abstract_inverted_index.presented | 135, 153, 170 |
| abstract_inverted_index.security, | 34, 119 |
| abstract_inverted_index.selection | 69 |
| abstract_inverted_index.supremacy | 221 |
| abstract_inverted_index.technique | 137, 159, 172, 205 |
| abstract_inverted_index.CEOGC-DLLP | 136, 154, 171, 204, 224 |
| abstract_inverted_index.Currently, | 0 |
| abstract_inverted_index.Therefore, | 77 |
| abstract_inverted_index.assessment | 201 |
| abstract_inverted_index.balancing, | 123 |
| abstract_inverted_index.capability | 17 |
| abstract_inverted_index.clustering | 143 |
| abstract_inverted_index.comparison | 217 |
| abstract_inverted_index.efficiency | 130 |
| abstract_inverted_index.prediction | 91, 147, 183 |
| abstract_inverted_index.processes. | 148 |
| abstract_inverted_index.recognizes | 99 |
| abstract_inverted_index.represents | 219 |
| abstract_inverted_index.techniques | 229 |
| abstract_inverted_index.throughput | 233 |
| abstract_inverted_index.challenges, | 110 |
| abstract_inverted_index.constraints | 45 |
| abstract_inverted_index.efficiency. | 53 |
| abstract_inverted_index.equilibrium | 83 |
| abstract_inverted_index.limitations | 26 |
| abstract_inverted_index.parameters. | 166 |
| abstract_inverted_index.requirement | 5 |
| abstract_inverted_index.(CEOGC-DLLP) | 92 |
| abstract_inverted_index.accomplishes | 139 |
| abstract_inverted_index.acknowledges | 107 |
| abstract_inverted_index.applications | 7, 20, 105 |
| abstract_inverted_index.constraints, | 118 |
| abstract_inverted_index.encompassing | 164 |
| abstract_inverted_index.environment. | 96 |
| abstract_inverted_index.experimental | 200 |
| abstract_inverted_index.investigated | 212 |
| abstract_inverted_index.communication | 74, 86, 141 |
| abstract_inverted_index.heterogeneity | 30 |
| abstract_inverted_index.optimization, | 29, 114 |
| abstract_inverted_index.communication. | 198 |
| abstract_inverted_index.heterogeneity, | 116 |
| abstract_inverted_index.optimizer-based | 84 |
| abstract_inverted_index.learning-enabled | 89 |
| abstract_inverted_index.network’s | 52 |
| abstract_inverted_index.intelligent-related | 65 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.73065838 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |