Characterizing throughput and convergence time in dynamic multi-connectivity 5G deployments Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.comcom.2022.01.015
Fifth-generation (5G) mobile communications are expected to integrate multiple radio access technologies (RATs) within a unified access network by allowing the user equipment (UE) to utilize them concurrently. As a consequence, mobile users face even more heterogeneous connectivity options, which creates challenges for efficient decision-making when selecting a network dynamically. In this work, with the tools of queuing theory, integral geometry, and optimization theory, we develop a novel mobility-centric analytical methodology for multi-RAT deployments. Particularly, we first contribute a framework for optimal data rate allocation in the network-assisted regime. Then, we characterize the convergence time of the distributed optimization algorithms based on reinforcement learning to reduce the signaling overheads. Our findings suggest that network-assisted strategies may improve the UE throughput by up to 60% depending on the considered deployment, where the gains increase with a higher density of millimeter-wave New Radio (NR) base stations. A user-centric solution based on reinforcement learning mechanisms is capable of approaching the performance of the network-assisted scheme. However, the associated convergence time may be prohibitive, on the order of several minutes. To improve the latter, we further propose and evaluate a transfer learning-based algorithm that allows to decrease the convergence time by up to 10 times, thus becoming a simple solution for rate-optimized operation in future 5G NR deployments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.comcom.2022.01.015
- OA Status
- hybrid
- Cited By
- 13
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4210736944
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4210736944Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.comcom.2022.01.015Digital Object Identifier
- Title
-
Characterizing throughput and convergence time in dynamic multi-connectivity 5G deploymentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-01Full publication date if available
- Authors
-
Rustam Pirmagomedov, Dmitri Moltchanov, Andrey Samuylov, Antonino Orsino, Johan Torsner, Sergey Andreev, Yevgeni KoucheryavyList of authors in order
- Landing page
-
https://doi.org/10.1016/j.comcom.2022.01.015Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.comcom.2022.01.015Direct OA link when available
- Concepts
-
Computer science, Reinforcement learning, Throughput, Cellular network, Convergence (economics), Base station, Distributed computing, User equipment, Computer network, Wireless, Telecommunications, Machine learning, Economic growth, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 5, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4210736944 |
|---|---|
| doi | https://doi.org/10.1016/j.comcom.2022.01.015 |
| ids.doi | https://doi.org/10.1016/j.comcom.2022.01.015 |
| ids.openalex | https://openalex.org/W4210736944 |
| fwci | 1.39940736 |
| type | article |
| title | Characterizing throughput and convergence time in dynamic multi-connectivity 5G deployments |
| biblio.issue | |
| biblio.volume | 187 |
| biblio.last_page | 58 |
| biblio.first_page | 45 |
| topics[0].id | https://openalex.org/T10148 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced MIMO Systems Optimization |
| topics[1].id | https://openalex.org/T10936 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Millimeter-Wave Propagation and Modeling |
| topics[2].id | https://openalex.org/T11158 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Wireless Networks and Protocols |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | USD |
| apc_list.value_usd | 2300 |
| apc_paid.value | 2300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2300 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8891314268112183 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7927873134613037 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C157764524 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6334549784660339 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[2].display_name | Throughput |
| concepts[3].id | https://openalex.org/C153646914 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5923569202423096 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q535695 |
| concepts[3].display_name | Cellular network |
| concepts[4].id | https://openalex.org/C2777303404 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5569192171096802 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[4].display_name | Convergence (economics) |
| concepts[5].id | https://openalex.org/C68649174 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5472549796104431 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1379116 |
| concepts[5].display_name | Base station |
| concepts[6].id | https://openalex.org/C120314980 |
| concepts[6].level | 1 |
| concepts[6].score | 0.45276251435279846 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[6].display_name | Distributed computing |
| concepts[7].id | https://openalex.org/C2781327853 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4223257005214691 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3552547 |
| concepts[7].display_name | User equipment |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3810465931892395 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C555944384 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3008561134338379 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[9].display_name | Wireless |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.15675663948059082 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11938518285751343 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C50522688 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[12].display_name | Economic growth |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8891314268112183 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.7927873134613037 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/throughput |
| keywords[2].score | 0.6334549784660339 |
| keywords[2].display_name | Throughput |
| keywords[3].id | https://openalex.org/keywords/cellular-network |
| keywords[3].score | 0.5923569202423096 |
| keywords[3].display_name | Cellular network |
| keywords[4].id | https://openalex.org/keywords/convergence |
| keywords[4].score | 0.5569192171096802 |
| keywords[4].display_name | Convergence (economics) |
| keywords[5].id | https://openalex.org/keywords/base-station |
| keywords[5].score | 0.5472549796104431 |
| keywords[5].display_name | Base station |
| keywords[6].id | https://openalex.org/keywords/distributed-computing |
| keywords[6].score | 0.45276251435279846 |
| keywords[6].display_name | Distributed computing |
| keywords[7].id | https://openalex.org/keywords/user-equipment |
| keywords[7].score | 0.4223257005214691 |
| keywords[7].display_name | User equipment |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.3810465931892395 |
| keywords[8].display_name | Computer network |
| keywords[9].id | https://openalex.org/keywords/wireless |
| keywords[9].score | 0.3008561134338379 |
| keywords[9].display_name | Wireless |
| keywords[10].id | https://openalex.org/keywords/telecommunications |
| keywords[10].score | 0.15675663948059082 |
| keywords[10].display_name | Telecommunications |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.11938518285751343 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1016/j.comcom.2022.01.015 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S115004586 |
| locations[0].source.issn | 0140-3664, 1873-703X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0140-3664 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computer Communications |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computer Communications |
| locations[0].landing_page_url | https://doi.org/10.1016/j.comcom.2022.01.015 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5006197598 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4860-8598 |
| authorships[0].author.display_name | Rustam Pirmagomedov |
| authorships[0].countries | FI |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166825849 |
| authorships[0].affiliations[0].raw_affiliation_string | Tampere University, Finland |
| authorships[0].institutions[0].id | https://openalex.org/I166825849 |
| authorships[0].institutions[0].ror | https://ror.org/033003e23 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I166825849 |
| authorships[0].institutions[0].country_code | FI |
| authorships[0].institutions[0].display_name | Tampere University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rustam Pirmagomedov |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Tampere University, Finland |
| authorships[1].author.id | https://openalex.org/A5088224958 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4007-7187 |
| authorships[1].author.display_name | Dmitri Moltchanov |
| authorships[1].countries | FI |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166825849 |
| authorships[1].affiliations[0].raw_affiliation_string | Tampere University, Finland |
| authorships[1].institutions[0].id | https://openalex.org/I166825849 |
| authorships[1].institutions[0].ror | https://ror.org/033003e23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I166825849 |
| authorships[1].institutions[0].country_code | FI |
| authorships[1].institutions[0].display_name | Tampere University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dmitri Moltchanov |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Tampere University, Finland |
| authorships[2].author.id | https://openalex.org/A5046152323 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2087-769X |
| authorships[2].author.display_name | Andrey Samuylov |
| authorships[2].countries | FI, RU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I166825849 |
| authorships[2].affiliations[0].raw_affiliation_string | Tampere University, Finland |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I126527374 |
| authorships[2].affiliations[1].raw_affiliation_string | Peoples' Friendship University of Russia (RUDN University), Russia |
| authorships[2].institutions[0].id | https://openalex.org/I166825849 |
| authorships[2].institutions[0].ror | https://ror.org/033003e23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I166825849 |
| authorships[2].institutions[0].country_code | FI |
| authorships[2].institutions[0].display_name | Tampere University |
| authorships[2].institutions[1].id | https://openalex.org/I126527374 |
| authorships[2].institutions[1].ror | https://ror.org/02dn9h927 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I126527374 |
| authorships[2].institutions[1].country_code | RU |
| authorships[2].institutions[1].display_name | Peoples' Friendship University of Russia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andrey Samuylov |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Peoples' Friendship University of Russia (RUDN University), Russia, Tampere University, Finland |
| authorships[3].author.id | https://openalex.org/A5029903189 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3183-1467 |
| authorships[3].author.display_name | Antonino Orsino |
| authorships[3].countries | FI |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210163994 |
| authorships[3].affiliations[0].raw_affiliation_string | Ericsson Research, Finland |
| authorships[3].institutions[0].id | https://openalex.org/I4210163994 |
| authorships[3].institutions[0].ror | https://ror.org/04vv43q89 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1306339040, https://openalex.org/I4210163994 |
| authorships[3].institutions[0].country_code | FI |
| authorships[3].institutions[0].display_name | Ericsson (Finland) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Antonino Orsino |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Ericsson Research, Finland |
| authorships[4].author.id | https://openalex.org/A5066707764 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Johan Torsner |
| authorships[4].countries | FI |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210163994 |
| authorships[4].affiliations[0].raw_affiliation_string | Ericsson Research, Finland |
| authorships[4].institutions[0].id | https://openalex.org/I4210163994 |
| authorships[4].institutions[0].ror | https://ror.org/04vv43q89 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1306339040, https://openalex.org/I4210163994 |
| authorships[4].institutions[0].country_code | FI |
| authorships[4].institutions[0].display_name | Ericsson (Finland) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Johan Torsner |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Ericsson Research, Finland |
| authorships[5].author.id | https://openalex.org/A5049711982 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8223-3665 |
| authorships[5].author.display_name | Sergey Andreev |
| authorships[5].countries | FI |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I166825849 |
| authorships[5].affiliations[0].raw_affiliation_string | Tampere University, Finland |
| authorships[5].institutions[0].id | https://openalex.org/I166825849 |
| authorships[5].institutions[0].ror | https://ror.org/033003e23 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I166825849 |
| authorships[5].institutions[0].country_code | FI |
| authorships[5].institutions[0].display_name | Tampere University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sergey Andreev |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Tampere University, Finland |
| authorships[6].author.id | https://openalex.org/A5015032841 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3976-297X |
| authorships[6].author.display_name | Yevgeni Koucheryavy |
| authorships[6].countries | FI |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I166825849 |
| authorships[6].affiliations[0].raw_affiliation_string | Tampere University, Finland |
| authorships[6].institutions[0].id | https://openalex.org/I166825849 |
| authorships[6].institutions[0].ror | https://ror.org/033003e23 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I166825849 |
| authorships[6].institutions[0].country_code | FI |
| authorships[6].institutions[0].display_name | Tampere University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yevgeni Koucheryavy |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Tampere University, Finland |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.comcom.2022.01.015 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Characterizing throughput and convergence time in dynamic multi-connectivity 5G deployments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10148 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced MIMO Systems Optimization |
| related_works | https://openalex.org/W2303288554, https://openalex.org/W3033750547, https://openalex.org/W2029216794, https://openalex.org/W4226210192, https://openalex.org/W4386698331, https://openalex.org/W2047225036, https://openalex.org/W2138314731, https://openalex.org/W2029263917, https://openalex.org/W2093207996, https://openalex.org/W2982446297 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.comcom.2022.01.015 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S115004586 |
| best_oa_location.source.issn | 0140-3664, 1873-703X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0140-3664 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computer Communications |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computer Communications |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.comcom.2022.01.015 |
| primary_location.id | doi:10.1016/j.comcom.2022.01.015 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S115004586 |
| primary_location.source.issn | 0140-3664, 1873-703X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0140-3664 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computer Communications |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computer Communications |
| primary_location.landing_page_url | https://doi.org/10.1016/j.comcom.2022.01.015 |
| publication_date | 2022-02-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2772664513, https://openalex.org/W2605289347, https://openalex.org/W2513616575, https://openalex.org/W2345842246, https://openalex.org/W2063792093, https://openalex.org/W6684253047, https://openalex.org/W2055490185, https://openalex.org/W2057071851, https://openalex.org/W2560609874, https://openalex.org/W2095292199, https://openalex.org/W2616025097, https://openalex.org/W6729464962, https://openalex.org/W2040371969, https://openalex.org/W2325794899, https://openalex.org/W6629801596, https://openalex.org/W6749780994, https://openalex.org/W1984220200, https://openalex.org/W6679940578, https://openalex.org/W1992248988, https://openalex.org/W2748791832, https://openalex.org/W2517411336, https://openalex.org/W2575875755, https://openalex.org/W2796702117, https://openalex.org/W2904228050, https://openalex.org/W2912729427, https://openalex.org/W6724013682, https://openalex.org/W2808127061, https://openalex.org/W2964022516, https://openalex.org/W2123715210, https://openalex.org/W6721820837, https://openalex.org/W2049049061, https://openalex.org/W2149071511, https://openalex.org/W2264658725, https://openalex.org/W2058403156, https://openalex.org/W2049095581, https://openalex.org/W2519316323, https://openalex.org/W2014690066, https://openalex.org/W2102675181, https://openalex.org/W2746553466, https://openalex.org/W2145339207, https://openalex.org/W2922273628, https://openalex.org/W2169493532, https://openalex.org/W2140010700, https://openalex.org/W4254565654, https://openalex.org/W4214717370, https://openalex.org/W4376524945, https://openalex.org/W4392470360, https://openalex.org/W3204209988, https://openalex.org/W2795869619, https://openalex.org/W3098450357, https://openalex.org/W4250481916, https://openalex.org/W2793621925, https://openalex.org/W2001598892, https://openalex.org/W2088012076, https://openalex.org/W2749807327, https://openalex.org/W4255671420, https://openalex.org/W2963864421 |
| referenced_works_count | 57 |
| abstract_inverted_index.A | 144 |
| abstract_inverted_index.a | 14, 29, 47, 66, 78, 134, 185, 203 |
| abstract_inverted_index.10 | 199 |
| abstract_inverted_index.5G | 211 |
| abstract_inverted_index.As | 28 |
| abstract_inverted_index.In | 50 |
| abstract_inverted_index.NR | 212 |
| abstract_inverted_index.To | 176 |
| abstract_inverted_index.UE | 118 |
| abstract_inverted_index.be | 168 |
| abstract_inverted_index.by | 18, 120, 196 |
| abstract_inverted_index.in | 85, 209 |
| abstract_inverted_index.is | 152 |
| abstract_inverted_index.of | 56, 95, 137, 154, 158, 173 |
| abstract_inverted_index.on | 101, 125, 148, 170 |
| abstract_inverted_index.to | 6, 24, 104, 122, 191, 198 |
| abstract_inverted_index.up | 121, 197 |
| abstract_inverted_index.we | 64, 75, 90, 180 |
| abstract_inverted_index.60% | 123 |
| abstract_inverted_index.New | 139 |
| abstract_inverted_index.Our | 109 |
| abstract_inverted_index.and | 61, 183 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.for | 42, 71, 80, 206 |
| abstract_inverted_index.may | 115, 167 |
| abstract_inverted_index.the | 20, 54, 86, 92, 96, 106, 117, 126, 130, 156, 159, 163, 171, 178, 193 |
| abstract_inverted_index.(5G) | 1 |
| abstract_inverted_index.(NR) | 141 |
| abstract_inverted_index.(UE) | 23 |
| abstract_inverted_index.base | 142 |
| abstract_inverted_index.data | 82 |
| abstract_inverted_index.even | 34 |
| abstract_inverted_index.face | 33 |
| abstract_inverted_index.more | 35 |
| abstract_inverted_index.rate | 83 |
| abstract_inverted_index.that | 112, 189 |
| abstract_inverted_index.them | 26 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.thus | 201 |
| abstract_inverted_index.time | 94, 166, 195 |
| abstract_inverted_index.user | 21 |
| abstract_inverted_index.when | 45 |
| abstract_inverted_index.with | 53, 133 |
| abstract_inverted_index.Radio | 140 |
| abstract_inverted_index.Then, | 89 |
| abstract_inverted_index.based | 100, 147 |
| abstract_inverted_index.first | 76 |
| abstract_inverted_index.gains | 131 |
| abstract_inverted_index.novel | 67 |
| abstract_inverted_index.order | 172 |
| abstract_inverted_index.radio | 9 |
| abstract_inverted_index.tools | 55 |
| abstract_inverted_index.users | 32 |
| abstract_inverted_index.where | 129 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.work, | 52 |
| abstract_inverted_index.(RATs) | 12 |
| abstract_inverted_index.access | 10, 16 |
| abstract_inverted_index.allows | 190 |
| abstract_inverted_index.future | 210 |
| abstract_inverted_index.higher | 135 |
| abstract_inverted_index.mobile | 2, 31 |
| abstract_inverted_index.reduce | 105 |
| abstract_inverted_index.simple | 204 |
| abstract_inverted_index.times, | 200 |
| abstract_inverted_index.within | 13 |
| abstract_inverted_index.capable | 153 |
| abstract_inverted_index.creates | 40 |
| abstract_inverted_index.density | 136 |
| abstract_inverted_index.develop | 65 |
| abstract_inverted_index.further | 181 |
| abstract_inverted_index.improve | 116, 177 |
| abstract_inverted_index.latter, | 179 |
| abstract_inverted_index.network | 17, 48 |
| abstract_inverted_index.optimal | 81 |
| abstract_inverted_index.propose | 182 |
| abstract_inverted_index.queuing | 57 |
| abstract_inverted_index.regime. | 88 |
| abstract_inverted_index.scheme. | 161 |
| abstract_inverted_index.several | 174 |
| abstract_inverted_index.suggest | 111 |
| abstract_inverted_index.theory, | 58, 63 |
| abstract_inverted_index.unified | 15 |
| abstract_inverted_index.utilize | 25 |
| abstract_inverted_index.However, | 162 |
| abstract_inverted_index.allowing | 19 |
| abstract_inverted_index.becoming | 202 |
| abstract_inverted_index.decrease | 192 |
| abstract_inverted_index.evaluate | 184 |
| abstract_inverted_index.expected | 5 |
| abstract_inverted_index.findings | 110 |
| abstract_inverted_index.increase | 132 |
| abstract_inverted_index.integral | 59 |
| abstract_inverted_index.learning | 103, 150 |
| abstract_inverted_index.minutes. | 175 |
| abstract_inverted_index.multiple | 8 |
| abstract_inverted_index.options, | 38 |
| abstract_inverted_index.solution | 146, 205 |
| abstract_inverted_index.transfer | 186 |
| abstract_inverted_index.algorithm | 188 |
| abstract_inverted_index.depending | 124 |
| abstract_inverted_index.efficient | 43 |
| abstract_inverted_index.equipment | 22 |
| abstract_inverted_index.framework | 79 |
| abstract_inverted_index.geometry, | 60 |
| abstract_inverted_index.integrate | 7 |
| abstract_inverted_index.multi-RAT | 72 |
| abstract_inverted_index.operation | 208 |
| abstract_inverted_index.selecting | 46 |
| abstract_inverted_index.signaling | 107 |
| abstract_inverted_index.stations. | 143 |
| abstract_inverted_index.algorithms | 99 |
| abstract_inverted_index.allocation | 84 |
| abstract_inverted_index.analytical | 69 |
| abstract_inverted_index.associated | 164 |
| abstract_inverted_index.challenges | 41 |
| abstract_inverted_index.considered | 127 |
| abstract_inverted_index.contribute | 77 |
| abstract_inverted_index.mechanisms | 151 |
| abstract_inverted_index.overheads. | 108 |
| abstract_inverted_index.strategies | 114 |
| abstract_inverted_index.throughput | 119 |
| abstract_inverted_index.approaching | 155 |
| abstract_inverted_index.convergence | 93, 165, 194 |
| abstract_inverted_index.deployment, | 128 |
| abstract_inverted_index.distributed | 97 |
| abstract_inverted_index.methodology | 70 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.characterize | 91 |
| abstract_inverted_index.connectivity | 37 |
| abstract_inverted_index.consequence, | 30 |
| abstract_inverted_index.deployments. | 73, 213 |
| abstract_inverted_index.dynamically. | 49 |
| abstract_inverted_index.optimization | 62, 98 |
| abstract_inverted_index.prohibitive, | 169 |
| abstract_inverted_index.technologies | 11 |
| abstract_inverted_index.user-centric | 145 |
| abstract_inverted_index.Particularly, | 74 |
| abstract_inverted_index.concurrently. | 27 |
| abstract_inverted_index.heterogeneous | 36 |
| abstract_inverted_index.reinforcement | 102, 149 |
| abstract_inverted_index.communications | 3 |
| abstract_inverted_index.learning-based | 187 |
| abstract_inverted_index.rate-optimized | 207 |
| abstract_inverted_index.decision-making | 44 |
| abstract_inverted_index.millimeter-wave | 138 |
| abstract_inverted_index.Fifth-generation | 0 |
| abstract_inverted_index.mobility-centric | 68 |
| abstract_inverted_index.network-assisted | 87, 113, 160 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5006197598 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I166825849 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.788328 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |