ChatGPT for Automated Qualitative Research: Content Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2196/59050
Background Data analysis approaches such as qualitative content analysis are notoriously time and labor intensive because of the time to detect, assess, and code a large amount of data. Tools such as ChatGPT may have tremendous potential in automating at least some of the analysis. Objective The aim of this study was to explore the utility of ChatGPT in conducting qualitative content analysis through the analysis of forum posts from people sharing their experiences on reducing their sugar consumption. Methods Inductive and deductive content analysis were performed on 537 forum posts to detect mechanisms of behavior change. Thorough prompt engineering provided appropriate instructions for ChatGPT to execute data analysis tasks. Data identification involved extracting change mechanisms from a subset of forum posts. The precision of the extracted data was assessed through comparison with human coding. On the basis of the identified change mechanisms, coding schemes were developed with ChatGPT using data-driven (inductive) and theory-driven (deductive) content analysis approaches. The deductive approach was informed by the Theoretical Domains Framework using both an unconstrained coding scheme and a structured coding matrix. In total, 10 coding schemes were created from a subset of data and then applied to the full data set in 10 new conversations, resulting in 100 conversations each for inductive and unconstrained deductive analysis. A total of 10 further conversations coded the full data set into the structured coding matrix. Intercoder agreement was evaluated across and within coding schemes. ChatGPT output was also evaluated by the researchers to assess whether it reflected prompt instructions. Results The precision of detecting change mechanisms in the data subset ranged from 66% to 88%. Overall κ scores for intercoder agreement ranged from 0.72 to 0.82 across inductive coding schemes and from 0.58 to 0.73 across unconstrained coding schemes and structured coding matrix. Coding into the best-performing coding scheme resulted in category-specific κ scores ranging from 0.67 to 0.95 for the inductive approach and from 0.13 to 0.87 for the deductive approaches. ChatGPT largely followed prompt instructions in producing a description of each coding scheme, although the wording for the inductively developed coding schemes was lengthier than specified. Conclusions ChatGPT appears fairly reliable in assisting with qualitative analysis. ChatGPT performed better in developing an inductive coding scheme that emerged from the data than adapting an existing framework into an unconstrained coding scheme or coding directly into a structured matrix. The potential for ChatGPT to act as a second coder also appears promising, with almost perfect agreement in at least 1 coding scheme. The findings suggest that ChatGPT could prove useful as a tool to assist in each phase of qualitative content analysis, but multiple iterations are required to determine the reliability of each stage of analysis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2196/59050
- OA Status
- gold
- Cited By
- 56
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400981465
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400981465Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/59050Digital Object Identifier
- Title
-
ChatGPT for Automated Qualitative Research: Content AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-25Full publication date if available
- Authors
-
Rimke Bijker, Stephanie Merkouris, Nicki A. Dowling, Simone N. RoddaList of authors in order
- Landing page
-
https://doi.org/10.2196/59050Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/59050Direct OA link when available
- Concepts
-
Coding (social sciences), Computer science, Content analysis, Qualitative analysis, Data mining, Information retrieval, Data science, Qualitative research, Mathematics, Statistics, Sociology, Social scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
56Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 54, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400981465 |
|---|---|
| doi | https://doi.org/10.2196/59050 |
| ids.doi | https://doi.org/10.2196/59050 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39052327 |
| ids.openalex | https://openalex.org/W4400981465 |
| fwci | 13.63038373 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D036301 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Qualitative Research |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D001185 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Artificial Intelligence |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D036301 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Qualitative Research |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D036301 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Qualitative Research |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001185 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Artificial Intelligence |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D036301 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Qualitative Research |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| type | article |
| title | ChatGPT for Automated Qualitative Research: Content Analysis |
| biblio.issue | |
| biblio.volume | 26 |
| biblio.last_page | e59050 |
| biblio.first_page | e59050 |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9713000059127808 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T12026 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9386000037193298 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Explainable Artificial Intelligence (XAI) |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C179518139 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7636806964874268 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[0].display_name | Coding (social sciences) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7263317108154297 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C162446236 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6616381406784058 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q653137 |
| concepts[2].display_name | Content analysis |
| concepts[3].id | https://openalex.org/C3018587665 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4529402256011963 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7268696 |
| concepts[3].display_name | Qualitative analysis |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4352591037750244 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C23123220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35312381386756897 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[5].display_name | Information retrieval |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3473595976829529 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C190248442 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3376542925834656 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q839486 |
| concepts[7].display_name | Qualitative research |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.095364511013031 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.08867588639259338 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C144024400 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[10].display_name | Sociology |
| concepts[11].id | https://openalex.org/C36289849 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[11].display_name | Social science |
| keywords[0].id | https://openalex.org/keywords/coding |
| keywords[0].score | 0.7636806964874268 |
| keywords[0].display_name | Coding (social sciences) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7263317108154297 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/content-analysis |
| keywords[2].score | 0.6616381406784058 |
| keywords[2].display_name | Content analysis |
| keywords[3].id | https://openalex.org/keywords/qualitative-analysis |
| keywords[3].score | 0.4529402256011963 |
| keywords[3].display_name | Qualitative analysis |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.4352591037750244 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/information-retrieval |
| keywords[5].score | 0.35312381386756897 |
| keywords[5].display_name | Information retrieval |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.3473595976829529 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/qualitative-research |
| keywords[7].score | 0.3376542925834656 |
| keywords[7].display_name | Qualitative research |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.095364511013031 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.08867588639259338 |
| keywords[9].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.2196/59050 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S17147534 |
| locations[0].source.issn | 1438-8871, 1439-4456 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1438-8871 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Medical Internet Research |
| locations[0].source.host_organization | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_name | JMIR Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320608 |
| locations[0].source.host_organization_lineage_names | JMIR Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Medical Internet Research |
| locations[0].landing_page_url | https://doi.org/10.2196/59050 |
| locations[1].id | pmid:39052327 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of medical Internet research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39052327 |
| locations[2].id | pmh:oai:doaj.org/article:20bcc2b972b6421ab3587d0506ca59c6 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Medical Internet Research, Vol 26, p e59050 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/20bcc2b972b6421ab3587d0506ca59c6 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11310599 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Med Internet Res |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11310599 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5025793090 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9150-2078 |
| authorships[0].author.display_name | Rimke Bijker |
| authorships[0].countries | NZ |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39854758 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand |
| authorships[0].institutions[0].id | https://openalex.org/I39854758 |
| authorships[0].institutions[0].ror | https://ror.org/01zvqw119 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39854758 |
| authorships[0].institutions[0].country_code | NZ |
| authorships[0].institutions[0].display_name | Auckland University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rimke Bijker |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand |
| authorships[1].author.id | https://openalex.org/A5075021042 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9037-6121 |
| authorships[1].author.display_name | Stephanie Merkouris |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Psychology, Deakin University, Burwood, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I149704539 |
| authorships[1].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Deakin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Stephanie S Merkouris |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Psychology, Deakin University, Burwood, Australia |
| authorships[2].author.id | https://openalex.org/A5053705919 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8592-2407 |
| authorships[2].author.display_name | Nicki A. Dowling |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Psychology, Deakin University, Burwood, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I149704539 |
| authorships[2].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Deakin University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nicki A Dowling |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Psychology, Deakin University, Burwood, Australia |
| authorships[3].author.id | https://openalex.org/A5028791629 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7973-1003 |
| authorships[3].author.display_name | Simone N. Rodda |
| authorships[3].countries | AU, NZ |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Psychology, Deakin University, Burwood, Australia |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I39854758 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand |
| authorships[3].institutions[0].id | https://openalex.org/I149704539 |
| authorships[3].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Deakin University |
| authorships[3].institutions[1].id | https://openalex.org/I39854758 |
| authorships[3].institutions[1].ror | https://ror.org/01zvqw119 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I39854758 |
| authorships[3].institutions[1].country_code | NZ |
| authorships[3].institutions[1].display_name | Auckland University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Simone N Rodda |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand, School of Psychology, Deakin University, Burwood, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/59050 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ChatGPT for Automated Qualitative Research: Content Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W3131418381, https://openalex.org/W2046541833, https://openalex.org/W2110461478, https://openalex.org/W1499806064, https://openalex.org/W2140472019, https://openalex.org/W4240869053, https://openalex.org/W2057857755, https://openalex.org/W2128149688, https://openalex.org/W2261353938, https://openalex.org/W1905666390 |
| cited_by_count | 56 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 54 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.2196/59050 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S17147534 |
| best_oa_location.source.issn | 1438-8871, 1439-4456 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1438-8871 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Medical Internet Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_name | JMIR Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| best_oa_location.source.host_organization_lineage_names | JMIR Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Medical Internet Research |
| best_oa_location.landing_page_url | https://doi.org/10.2196/59050 |
| primary_location.id | doi:10.2196/59050 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S17147534 |
| primary_location.source.issn | 1438-8871, 1439-4456 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1438-8871 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Medical Internet Research |
| primary_location.source.host_organization | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_name | JMIR Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320608 |
| primary_location.source.host_organization_lineage_names | JMIR Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Medical Internet Research |
| primary_location.landing_page_url | https://doi.org/10.2196/59050 |
| publication_date | 2024-07-25 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4248450049, https://openalex.org/W2067404301, https://openalex.org/W2142225512, https://openalex.org/W4381569739, https://openalex.org/W2938892948, https://openalex.org/W2980626976, https://openalex.org/W1544133109, https://openalex.org/W3024240210, https://openalex.org/W2492562744, https://openalex.org/W2122328334, https://openalex.org/W2284386481, https://openalex.org/W2088948434, https://openalex.org/W1513859721, https://openalex.org/W1976770755, https://openalex.org/W2978315017, https://openalex.org/W2953572154, https://openalex.org/W2281670772, https://openalex.org/W3001362559, https://openalex.org/W4307688794, https://openalex.org/W2053154970, https://openalex.org/W4320495408, https://openalex.org/W4387331580, https://openalex.org/W4367051110, https://openalex.org/W4323848232, https://openalex.org/W4385910049, https://openalex.org/W4385433058, https://openalex.org/W4389490285, https://openalex.org/W4386724748, https://openalex.org/W2077109464, https://openalex.org/W2972363652, https://openalex.org/W4377010595, https://openalex.org/W4379598302, https://openalex.org/W4368342518, https://openalex.org/W4379259169, https://openalex.org/W2150290224, https://openalex.org/W2164777277, https://openalex.org/W2103125760, https://openalex.org/W2049809255, https://openalex.org/W4225496273, https://openalex.org/W4365512576, https://openalex.org/W4385242971, https://openalex.org/W2789894922, https://openalex.org/W2604652163, https://openalex.org/W2283694230, https://openalex.org/W4317853296, https://openalex.org/W3021916629, https://openalex.org/W4301019775, https://openalex.org/W4391126287 |
| referenced_works_count | 48 |
| abstract_inverted_index.1 | 414 |
| abstract_inverted_index.A | 214 |
| abstract_inverted_index.a | 24, 117, 175, 187, 334, 391, 401, 426 |
| abstract_inverted_index.10 | 181, 200, 217 |
| abstract_inverted_index.In | 179 |
| abstract_inverted_index.On | 135 |
| abstract_inverted_index.an | 170, 368, 379, 383 |
| abstract_inverted_index.as | 5, 31, 400, 425 |
| abstract_inverted_index.at | 39, 412 |
| abstract_inverted_index.by | 163, 244 |
| abstract_inverted_index.in | 37, 58, 199, 204, 261, 305, 332, 358, 366, 411, 430 |
| abstract_inverted_index.it | 250 |
| abstract_inverted_index.of | 16, 27, 42, 48, 56, 66, 94, 119, 124, 138, 189, 216, 257, 336, 433, 446, 449 |
| abstract_inverted_index.on | 74, 87 |
| abstract_inverted_index.or | 387 |
| abstract_inverted_index.to | 19, 52, 91, 105, 194, 247, 268, 279, 288, 312, 321, 398, 428, 442 |
| abstract_inverted_index.κ | 271, 307 |
| abstract_inverted_index.100 | 205 |
| abstract_inverted_index.537 | 88 |
| abstract_inverted_index.66% | 267 |
| abstract_inverted_index.The | 46, 122, 158, 255, 394, 417 |
| abstract_inverted_index.act | 399 |
| abstract_inverted_index.aim | 47 |
| abstract_inverted_index.and | 12, 22, 81, 152, 174, 191, 210, 235, 285, 294, 318 |
| abstract_inverted_index.are | 9, 440 |
| abstract_inverted_index.but | 437 |
| abstract_inverted_index.for | 103, 208, 273, 314, 323, 343, 396 |
| abstract_inverted_index.may | 33 |
| abstract_inverted_index.new | 201 |
| abstract_inverted_index.set | 198, 224 |
| abstract_inverted_index.the | 17, 43, 54, 64, 125, 136, 139, 164, 195, 221, 226, 245, 262, 300, 315, 324, 341, 344, 375, 444 |
| abstract_inverted_index.was | 51, 128, 161, 232, 241, 349 |
| abstract_inverted_index.0.13 | 320 |
| abstract_inverted_index.0.58 | 287 |
| abstract_inverted_index.0.67 | 311 |
| abstract_inverted_index.0.72 | 278 |
| abstract_inverted_index.0.73 | 289 |
| abstract_inverted_index.0.82 | 280 |
| abstract_inverted_index.0.87 | 322 |
| abstract_inverted_index.0.95 | 313 |
| abstract_inverted_index.88%. | 269 |
| abstract_inverted_index.Data | 1, 110 |
| abstract_inverted_index.also | 242, 404 |
| abstract_inverted_index.both | 169 |
| abstract_inverted_index.code | 23 |
| abstract_inverted_index.data | 107, 127, 190, 197, 223, 263, 376 |
| abstract_inverted_index.each | 207, 337, 431, 447 |
| abstract_inverted_index.from | 69, 116, 186, 266, 277, 286, 310, 319, 374 |
| abstract_inverted_index.full | 196, 222 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.into | 225, 299, 382, 390 |
| abstract_inverted_index.some | 41 |
| abstract_inverted_index.such | 4, 30 |
| abstract_inverted_index.than | 351, 377 |
| abstract_inverted_index.that | 372, 420 |
| abstract_inverted_index.then | 192 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.time | 11, 18 |
| abstract_inverted_index.tool | 427 |
| abstract_inverted_index.were | 85, 145, 184 |
| abstract_inverted_index.with | 132, 147, 360, 407 |
| abstract_inverted_index.Tools | 29 |
| abstract_inverted_index.basis | 137 |
| abstract_inverted_index.coded | 220 |
| abstract_inverted_index.coder | 403 |
| abstract_inverted_index.could | 422 |
| abstract_inverted_index.data. | 28 |
| abstract_inverted_index.forum | 67, 89, 120 |
| abstract_inverted_index.human | 133 |
| abstract_inverted_index.labor | 13 |
| abstract_inverted_index.large | 25 |
| abstract_inverted_index.least | 40, 413 |
| abstract_inverted_index.phase | 432 |
| abstract_inverted_index.posts | 68, 90 |
| abstract_inverted_index.prove | 423 |
| abstract_inverted_index.stage | 448 |
| abstract_inverted_index.study | 50 |
| abstract_inverted_index.sugar | 77 |
| abstract_inverted_index.their | 72, 76 |
| abstract_inverted_index.total | 215 |
| abstract_inverted_index.using | 149, 168 |
| abstract_inverted_index.Coding | 298 |
| abstract_inverted_index.across | 234, 281, 290 |
| abstract_inverted_index.almost | 408 |
| abstract_inverted_index.amount | 26 |
| abstract_inverted_index.assess | 248 |
| abstract_inverted_index.assist | 429 |
| abstract_inverted_index.better | 365 |
| abstract_inverted_index.change | 114, 141, 259 |
| abstract_inverted_index.coding | 143, 172, 177, 182, 228, 237, 283, 292, 296, 302, 338, 347, 370, 385, 388, 415 |
| abstract_inverted_index.detect | 92 |
| abstract_inverted_index.fairly | 356 |
| abstract_inverted_index.output | 240 |
| abstract_inverted_index.people | 70 |
| abstract_inverted_index.posts. | 121 |
| abstract_inverted_index.prompt | 98, 252, 330 |
| abstract_inverted_index.ranged | 265, 276 |
| abstract_inverted_index.scheme | 173, 303, 371, 386 |
| abstract_inverted_index.scores | 272, 308 |
| abstract_inverted_index.second | 402 |
| abstract_inverted_index.subset | 118, 188, 264 |
| abstract_inverted_index.tasks. | 109 |
| abstract_inverted_index.total, | 180 |
| abstract_inverted_index.useful | 424 |
| abstract_inverted_index.within | 236 |
| abstract_inverted_index.ChatGPT | 32, 57, 104, 148, 239, 327, 354, 363, 397, 421 |
| abstract_inverted_index.Domains | 166 |
| abstract_inverted_index.Methods | 79 |
| abstract_inverted_index.Overall | 270 |
| abstract_inverted_index.Results | 254 |
| abstract_inverted_index.appears | 355, 405 |
| abstract_inverted_index.applied | 193 |
| abstract_inverted_index.assess, | 21 |
| abstract_inverted_index.because | 15 |
| abstract_inverted_index.change. | 96 |
| abstract_inverted_index.coding. | 134 |
| abstract_inverted_index.content | 7, 61, 83, 155, 435 |
| abstract_inverted_index.created | 185 |
| abstract_inverted_index.detect, | 20 |
| abstract_inverted_index.emerged | 373 |
| abstract_inverted_index.execute | 106 |
| abstract_inverted_index.explore | 53 |
| abstract_inverted_index.further | 218 |
| abstract_inverted_index.largely | 328 |
| abstract_inverted_index.matrix. | 178, 229, 297, 393 |
| abstract_inverted_index.perfect | 409 |
| abstract_inverted_index.ranging | 309 |
| abstract_inverted_index.scheme, | 339 |
| abstract_inverted_index.scheme. | 416 |
| abstract_inverted_index.schemes | 144, 183, 284, 293, 348 |
| abstract_inverted_index.sharing | 71 |
| abstract_inverted_index.suggest | 419 |
| abstract_inverted_index.through | 63, 130 |
| abstract_inverted_index.utility | 55 |
| abstract_inverted_index.whether | 249 |
| abstract_inverted_index.wording | 342 |
| abstract_inverted_index.Thorough | 97 |
| abstract_inverted_index.adapting | 378 |
| abstract_inverted_index.although | 340 |
| abstract_inverted_index.analysis | 2, 8, 62, 65, 84, 108, 156 |
| abstract_inverted_index.approach | 160, 317 |
| abstract_inverted_index.assessed | 129 |
| abstract_inverted_index.behavior | 95 |
| abstract_inverted_index.directly | 389 |
| abstract_inverted_index.existing | 380 |
| abstract_inverted_index.findings | 418 |
| abstract_inverted_index.followed | 329 |
| abstract_inverted_index.informed | 162 |
| abstract_inverted_index.involved | 112 |
| abstract_inverted_index.multiple | 438 |
| abstract_inverted_index.provided | 100 |
| abstract_inverted_index.reducing | 75 |
| abstract_inverted_index.reliable | 357 |
| abstract_inverted_index.required | 441 |
| abstract_inverted_index.resulted | 304 |
| abstract_inverted_index.schemes. | 238 |
| abstract_inverted_index.Framework | 167 |
| abstract_inverted_index.Inductive | 80 |
| abstract_inverted_index.Objective | 45 |
| abstract_inverted_index.agreement | 231, 275, 410 |
| abstract_inverted_index.analysis, | 436 |
| abstract_inverted_index.analysis. | 44, 213, 362, 450 |
| abstract_inverted_index.assisting | 359 |
| abstract_inverted_index.deductive | 82, 159, 212, 325 |
| abstract_inverted_index.detecting | 258 |
| abstract_inverted_index.determine | 443 |
| abstract_inverted_index.developed | 146, 346 |
| abstract_inverted_index.evaluated | 233, 243 |
| abstract_inverted_index.extracted | 126 |
| abstract_inverted_index.framework | 381 |
| abstract_inverted_index.inductive | 209, 282, 316, 369 |
| abstract_inverted_index.intensive | 14 |
| abstract_inverted_index.lengthier | 350 |
| abstract_inverted_index.performed | 86, 364 |
| abstract_inverted_index.potential | 36, 395 |
| abstract_inverted_index.precision | 123, 256 |
| abstract_inverted_index.producing | 333 |
| abstract_inverted_index.reflected | 251 |
| abstract_inverted_index.resulting | 203 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.Intercoder | 230 |
| abstract_inverted_index.approaches | 3 |
| abstract_inverted_index.automating | 38 |
| abstract_inverted_index.comparison | 131 |
| abstract_inverted_index.conducting | 59 |
| abstract_inverted_index.developing | 367 |
| abstract_inverted_index.extracting | 113 |
| abstract_inverted_index.identified | 140 |
| abstract_inverted_index.intercoder | 274 |
| abstract_inverted_index.iterations | 439 |
| abstract_inverted_index.mechanisms | 93, 115, 260 |
| abstract_inverted_index.promising, | 406 |
| abstract_inverted_index.specified. | 352 |
| abstract_inverted_index.structured | 176, 227, 295, 392 |
| abstract_inverted_index.tremendous | 35 |
| abstract_inverted_index.(deductive) | 154 |
| abstract_inverted_index.(inductive) | 151 |
| abstract_inverted_index.Conclusions | 353 |
| abstract_inverted_index.Theoretical | 165 |
| abstract_inverted_index.approaches. | 157, 326 |
| abstract_inverted_index.appropriate | 101 |
| abstract_inverted_index.data-driven | 150 |
| abstract_inverted_index.description | 335 |
| abstract_inverted_index.engineering | 99 |
| abstract_inverted_index.experiences | 73 |
| abstract_inverted_index.inductively | 345 |
| abstract_inverted_index.mechanisms, | 142 |
| abstract_inverted_index.notoriously | 10 |
| abstract_inverted_index.qualitative | 6, 60, 361, 434 |
| abstract_inverted_index.reliability | 445 |
| abstract_inverted_index.researchers | 246 |
| abstract_inverted_index.consumption. | 78 |
| abstract_inverted_index.instructions | 102, 331 |
| abstract_inverted_index.conversations | 206, 219 |
| abstract_inverted_index.instructions. | 253 |
| abstract_inverted_index.theory-driven | 153 |
| abstract_inverted_index.unconstrained | 171, 211, 291, 384 |
| abstract_inverted_index.conversations, | 202 |
| abstract_inverted_index.identification | 111 |
| abstract_inverted_index.best-performing | 301 |
| abstract_inverted_index.category-specific | 306 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5028791629 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I149704539, https://openalex.org/I39854758 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.98120445 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |