Chattronics: using GPTs to assist in the design of data acquisition systems Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.15183
The usefulness of Large Language Models (LLM) is being continuously tested in various fields. However, their intrinsic linguistic characteristic is still one of the limiting factors when applying these models to exact sciences. In this article, a novel approach to use General Pre-Trained Transformers to assist in the design phase of data acquisition systems will be presented. The solution is packaged in the form of an application that retains the conversational aspects of LLMs, in such a manner that the user must provide details on the desired project in order for the model to draft both a system-level architectural diagram and the block-level specifications, following a Top-Down methodology based on restrictions. To test this tool, two distinct user emulations were used, one of which uses an additional GPT model. In total, 4 different data acquisition projects were used in the testing phase, each with its own measurement requirements: angular position, temperature, acceleration and a fourth project with both pressure and superficial temperature measurements. After 160 test iterations, the study concludes that there is potential for these models to serve adequately as synthesis/assistant tools for data acquisition systems, but there are still technological limitations. The results show coherent architectures and topologies, but that GPTs have difficulties in simultaneously considering all requirements and many times commits theoretical mistakes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.15183
- https://arxiv.org/pdf/2409.15183
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403781074
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403781074Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.15183Digital Object Identifier
- Title
-
Chattronics: using GPTs to assist in the design of data acquisition systemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-23Full publication date if available
- Authors
-
James E. Brown, Thomas C. WeberList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.15183Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.15183Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.15183Direct OA link when available
- Concepts
-
Data acquisition, Computer science, Systems engineering, Engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403781074 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.15183 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.15183 |
| ids.openalex | https://openalex.org/W4403781074 |
| fwci | |
| type | preprint |
| title | Chattronics: using GPTs to assist in the design of data acquisition systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.635699987411499 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T12031 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6025999784469604 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Speech and dialogue systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C163985040 |
| concepts[0].level | 2 |
| concepts[0].score | 0.46522945165634155 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1172399 |
| concepts[0].display_name | Data acquisition |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.46449995040893555 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C201995342 |
| concepts[2].level | 1 |
| concepts[2].score | 0.38497424125671387 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[2].display_name | Systems engineering |
| concepts[3].id | https://openalex.org/C127413603 |
| concepts[3].level | 0 |
| concepts[3].score | 0.2164534330368042 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[3].display_name | Engineering |
| concepts[4].id | https://openalex.org/C111919701 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0778239369392395 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[4].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/data-acquisition |
| keywords[0].score | 0.46522945165634155 |
| keywords[0].display_name | Data acquisition |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.46449995040893555 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/systems-engineering |
| keywords[2].score | 0.38497424125671387 |
| keywords[2].display_name | Systems engineering |
| keywords[3].id | https://openalex.org/keywords/engineering |
| keywords[3].score | 0.2164534330368042 |
| keywords[3].display_name | Engineering |
| keywords[4].id | https://openalex.org/keywords/operating-system |
| keywords[4].score | 0.0778239369392395 |
| keywords[4].display_name | Operating system |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.15183 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.15183 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.15183 |
| locations[1].id | doi:10.48550/arxiv.2409.15183 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.15183 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5110774100 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-7502-3570 |
| authorships[0].author.display_name | James E. Brown |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brown, Jonathan Paul Driemeyer |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051670732 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8320-361X |
| authorships[1].author.display_name | Thomas C. Weber |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Weber, Tiago Oliveira |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.15183 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-26T00:00:00 |
| display_name | Chattronics: using GPTs to assist in the design of data acquisition systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.635699987411499 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.15183 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.15183 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.15183 |
| primary_location.id | pmh:oai:arXiv.org:2409.15183 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.15183 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.15183 |
| publication_date | 2024-09-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 131 |
| abstract_inverted_index.a | 36, 76, 96, 105, 153 |
| abstract_inverted_index.In | 33, 129 |
| abstract_inverted_index.To | 111 |
| abstract_inverted_index.an | 65, 125 |
| abstract_inverted_index.as | 180 |
| abstract_inverted_index.be | 55 |
| abstract_inverted_index.in | 11, 46, 61, 74, 88, 138, 205 |
| abstract_inverted_index.is | 7, 19, 59, 172 |
| abstract_inverted_index.of | 2, 22, 50, 64, 72, 122 |
| abstract_inverted_index.on | 84, 109 |
| abstract_inverted_index.to | 30, 39, 44, 93, 177 |
| abstract_inverted_index.160 | 164 |
| abstract_inverted_index.GPT | 127 |
| abstract_inverted_index.The | 0, 57, 193 |
| abstract_inverted_index.all | 208 |
| abstract_inverted_index.and | 100, 152, 159, 198, 210 |
| abstract_inverted_index.are | 189 |
| abstract_inverted_index.but | 187, 200 |
| abstract_inverted_index.for | 90, 174, 183 |
| abstract_inverted_index.its | 144 |
| abstract_inverted_index.one | 21, 121 |
| abstract_inverted_index.own | 145 |
| abstract_inverted_index.the | 23, 47, 62, 69, 79, 85, 91, 101, 139, 167 |
| abstract_inverted_index.two | 115 |
| abstract_inverted_index.use | 40 |
| abstract_inverted_index.GPTs | 202 |
| abstract_inverted_index.both | 95, 157 |
| abstract_inverted_index.data | 51, 133, 184 |
| abstract_inverted_index.each | 142 |
| abstract_inverted_index.form | 63 |
| abstract_inverted_index.have | 203 |
| abstract_inverted_index.many | 211 |
| abstract_inverted_index.must | 81 |
| abstract_inverted_index.show | 195 |
| abstract_inverted_index.such | 75 |
| abstract_inverted_index.test | 112, 165 |
| abstract_inverted_index.that | 67, 78, 170, 201 |
| abstract_inverted_index.this | 34, 113 |
| abstract_inverted_index.used | 137 |
| abstract_inverted_index.user | 80, 117 |
| abstract_inverted_index.uses | 124 |
| abstract_inverted_index.were | 119, 136 |
| abstract_inverted_index.when | 26 |
| abstract_inverted_index.will | 54 |
| abstract_inverted_index.with | 143, 156 |
| abstract_inverted_index.(LLM) | 6 |
| abstract_inverted_index.After | 163 |
| abstract_inverted_index.LLMs, | 73 |
| abstract_inverted_index.Large | 3 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.being | 8 |
| abstract_inverted_index.draft | 94 |
| abstract_inverted_index.exact | 31 |
| abstract_inverted_index.model | 92 |
| abstract_inverted_index.novel | 37 |
| abstract_inverted_index.order | 89 |
| abstract_inverted_index.phase | 49 |
| abstract_inverted_index.serve | 178 |
| abstract_inverted_index.still | 20, 190 |
| abstract_inverted_index.study | 168 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.there | 171, 188 |
| abstract_inverted_index.these | 28, 175 |
| abstract_inverted_index.times | 212 |
| abstract_inverted_index.tool, | 114 |
| abstract_inverted_index.tools | 182 |
| abstract_inverted_index.used, | 120 |
| abstract_inverted_index.which | 123 |
| abstract_inverted_index.Models | 5 |
| abstract_inverted_index.assist | 45 |
| abstract_inverted_index.design | 48 |
| abstract_inverted_index.fourth | 154 |
| abstract_inverted_index.manner | 77 |
| abstract_inverted_index.model. | 128 |
| abstract_inverted_index.models | 29, 176 |
| abstract_inverted_index.phase, | 141 |
| abstract_inverted_index.tested | 10 |
| abstract_inverted_index.total, | 130 |
| abstract_inverted_index.General | 41 |
| abstract_inverted_index.angular | 148 |
| abstract_inverted_index.aspects | 71 |
| abstract_inverted_index.commits | 213 |
| abstract_inverted_index.desired | 86 |
| abstract_inverted_index.details | 83 |
| abstract_inverted_index.diagram | 99 |
| abstract_inverted_index.factors | 25 |
| abstract_inverted_index.fields. | 13 |
| abstract_inverted_index.project | 87, 155 |
| abstract_inverted_index.provide | 82 |
| abstract_inverted_index.results | 194 |
| abstract_inverted_index.retains | 68 |
| abstract_inverted_index.systems | 53 |
| abstract_inverted_index.testing | 140 |
| abstract_inverted_index.various | 12 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.Language | 4 |
| abstract_inverted_index.Top-Down | 106 |
| abstract_inverted_index.applying | 27 |
| abstract_inverted_index.approach | 38 |
| abstract_inverted_index.article, | 35 |
| abstract_inverted_index.coherent | 196 |
| abstract_inverted_index.distinct | 116 |
| abstract_inverted_index.limiting | 24 |
| abstract_inverted_index.packaged | 60 |
| abstract_inverted_index.pressure | 158 |
| abstract_inverted_index.projects | 135 |
| abstract_inverted_index.solution | 58 |
| abstract_inverted_index.systems, | 186 |
| abstract_inverted_index.concludes | 169 |
| abstract_inverted_index.different | 132 |
| abstract_inverted_index.following | 104 |
| abstract_inverted_index.intrinsic | 16 |
| abstract_inverted_index.mistakes. | 215 |
| abstract_inverted_index.position, | 149 |
| abstract_inverted_index.potential | 173 |
| abstract_inverted_index.sciences. | 32 |
| abstract_inverted_index.additional | 126 |
| abstract_inverted_index.adequately | 179 |
| abstract_inverted_index.emulations | 118 |
| abstract_inverted_index.linguistic | 17 |
| abstract_inverted_index.presented. | 56 |
| abstract_inverted_index.usefulness | 1 |
| abstract_inverted_index.Pre-Trained | 42 |
| abstract_inverted_index.acquisition | 52, 134, 185 |
| abstract_inverted_index.application | 66 |
| abstract_inverted_index.block-level | 102 |
| abstract_inverted_index.considering | 207 |
| abstract_inverted_index.iterations, | 166 |
| abstract_inverted_index.measurement | 146 |
| abstract_inverted_index.methodology | 107 |
| abstract_inverted_index.superficial | 160 |
| abstract_inverted_index.temperature | 161 |
| abstract_inverted_index.theoretical | 214 |
| abstract_inverted_index.topologies, | 199 |
| abstract_inverted_index.Transformers | 43 |
| abstract_inverted_index.acceleration | 151 |
| abstract_inverted_index.continuously | 9 |
| abstract_inverted_index.difficulties | 204 |
| abstract_inverted_index.limitations. | 192 |
| abstract_inverted_index.requirements | 209 |
| abstract_inverted_index.system-level | 97 |
| abstract_inverted_index.temperature, | 150 |
| abstract_inverted_index.architectural | 98 |
| abstract_inverted_index.architectures | 197 |
| abstract_inverted_index.measurements. | 162 |
| abstract_inverted_index.requirements: | 147 |
| abstract_inverted_index.restrictions. | 110 |
| abstract_inverted_index.technological | 191 |
| abstract_inverted_index.characteristic | 18 |
| abstract_inverted_index.conversational | 70 |
| abstract_inverted_index.simultaneously | 206 |
| abstract_inverted_index.specifications, | 103 |
| abstract_inverted_index.synthesis/assistant | 181 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |