Checking Counterfeit Critiques on Commodities using Ensemble Classifiers Enhancing Information Credibility Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2024.03.246
The conundrum of the ubiquitous deceptive reviews has overruled the online ontology with the obsession of obscure but obligatory posting of product reviews for the customers to believe, behold and beget the online product marketing. This mandates contemporary research in the direction to delve deeper on the application and analysis of deceiving online reviews with matured and advanced AI models functional on large scale datasets to effectively and efficiently demarcate between the genuine and the sham. The research counteracts the counterfeiting product reviews via the applications, assessment and analysis of the befitting AI models - Elastic-net Classifier model based on block coordinate descent with Wordcloud and its further performance enhancement through LightGBM Trees Classifier with Grid Search and Early Stopping support, with Log-Loss as performance metric for experimentation to gain insight into the intricacies of detection, diagnosis and diminution of fake product reviews. The paper also delineates discriminative and affirmative aspects of the dataset quality, statistics, stability and standards inherent and coherent to the creation of the dataset using Large Language Models (LLMs) intrinsic to the zeitgeist juncture of recent times promoting machines to produce large scale, cost effective bogus reviews in lieu of the Amazon Mechanical Turks. The results obtained with the Log-Loss holdout score of 0.1462 conforming the LightGBM classifier proves its performance better than the Elastic-Net classifier, conforming it as better than the ROC-AUC in terms of its proximity to the prediction probability for the matching actual/true value.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2024.03.246
- OA Status
- diamond
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394565170
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394565170Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2024.03.246Digital Object Identifier
- Title
-
Checking Counterfeit Critiques on Commodities using Ensemble Classifiers Enhancing Information CredibilityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Ram Chatterjee, Mrinal Pandey, Hardeo Kumar Thakur, Anand GuptaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2024.03.246Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2024.03.246Direct OA link when available
- Concepts
-
Computer science, Counterfeit, Credibility, Artificial intelligence, Machine learning, Computer security, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394565170 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2024.03.246 |
| ids.doi | https://doi.org/10.1016/j.procs.2024.03.246 |
| ids.openalex | https://openalex.org/W4394565170 |
| fwci | 0.0 |
| type | article |
| title | Checking Counterfeit Critiques on Commodities using Ensemble Classifiers Enhancing Information Credibility |
| biblio.issue | |
| biblio.volume | 233 |
| biblio.last_page | 579 |
| biblio.first_page | 570 |
| topics[0].id | https://openalex.org/T11644 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Spam and Phishing Detection |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9776999950408936 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9721999764442444 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8889285922050476 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779356469 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8303930163383484 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q502918 |
| concepts[1].display_name | Counterfeit |
| concepts[2].id | https://openalex.org/C2780224610 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8058196306228638 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1530061 |
| concepts[2].display_name | Credibility |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4615571200847626 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4049017131328583 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C38652104 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3648737072944641 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[5].display_name | Computer security |
| concepts[6].id | https://openalex.org/C199539241 |
| concepts[6].level | 1 |
| concepts[6].score | 0.06952741742134094 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[6].display_name | Law |
| concepts[7].id | https://openalex.org/C17744445 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[7].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8889285922050476 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/counterfeit |
| keywords[1].score | 0.8303930163383484 |
| keywords[1].display_name | Counterfeit |
| keywords[2].id | https://openalex.org/keywords/credibility |
| keywords[2].score | 0.8058196306228638 |
| keywords[2].display_name | Credibility |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4615571200847626 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4049017131328583 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/computer-security |
| keywords[5].score | 0.3648737072944641 |
| keywords[5].display_name | Computer security |
| keywords[6].id | https://openalex.org/keywords/law |
| keywords[6].score | 0.06952741742134094 |
| keywords[6].display_name | Law |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2024.03.246 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2024.03.246 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5106223392 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ram Chatterjee |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I55016150 |
| authorships[0].affiliations[0].raw_affiliation_string | Manav Rachna University, Sector – 43, Aravalli Hills, Delhi – Surajkund Road, Faridabad, Haryana 121004, India |
| authorships[0].institutions[0].id | https://openalex.org/I55016150 |
| authorships[0].institutions[0].ror | https://ror.org/02kf4r633 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4411591084, https://openalex.org/I55016150 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Manav Rachna International Institute of Research and Studies |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ram Chatterjee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Manav Rachna University, Sector – 43, Aravalli Hills, Delhi – Surajkund Road, Faridabad, Haryana 121004, India |
| authorships[1].author.id | https://openalex.org/A5075207877 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8942-3568 |
| authorships[1].author.display_name | Mrinal Pandey |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I55016150 |
| authorships[1].affiliations[0].raw_affiliation_string | Manav Rachna University, Sector – 43, Aravalli Hills, Delhi – Surajkund Road, Faridabad, Haryana 121004, India |
| authorships[1].institutions[0].id | https://openalex.org/I55016150 |
| authorships[1].institutions[0].ror | https://ror.org/02kf4r633 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4411591084, https://openalex.org/I55016150 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Manav Rachna International Institute of Research and Studies |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mrinal Pandey |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Manav Rachna University, Sector – 43, Aravalli Hills, Delhi – Surajkund Road, Faridabad, Haryana 121004, India |
| authorships[2].author.id | https://openalex.org/A5045054705 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2954-1308 |
| authorships[2].author.display_name | Hardeo Kumar Thakur |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3129773123 |
| authorships[2].affiliations[0].raw_affiliation_string | Bennett University, Plot Nos 8, 11, TechZone 2, Greater Noida, Uttar Pradesh 201310, India |
| authorships[2].institutions[0].id | https://openalex.org/I3129773123 |
| authorships[2].institutions[0].ror | https://ror.org/00an5hx75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3129773123 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Bennett University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hardeo Kumar Thakur |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Bennett University, Plot Nos 8, 11, TechZone 2, Greater Noida, Uttar Pradesh 201310, India |
| authorships[3].author.id | https://openalex.org/A5017605774 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-7210-7572 |
| authorships[3].author.display_name | Anand Gupta |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I36090812 |
| authorships[3].affiliations[0].raw_affiliation_string | Netaji Subhas University of Technology(NSUT), Sec-3, Dwarka New Delhi 110078, India |
| authorships[3].institutions[0].id | https://openalex.org/I36090812 |
| authorships[3].institutions[0].ror | https://ror.org/01fczmh85 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I36090812 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Netaji Subhas University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Anand Gupta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Netaji Subhas University of Technology(NSUT), Sec-3, Dwarka New Delhi 110078, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2024.03.246 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Checking Counterfeit Critiques on Commodities using Ensemble Classifiers Enhancing Information Credibility |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11644 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Spam and Phishing Detection |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2024.03.246 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2024.03.246 |
| primary_location.id | doi:10.1016/j.procs.2024.03.246 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2024.03.246 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3118777162, https://openalex.org/W2933688539, https://openalex.org/W2905693896, https://openalex.org/W2275869402, https://openalex.org/W6691335908, https://openalex.org/W2905099924, https://openalex.org/W6678146508, https://openalex.org/W6684043126, https://openalex.org/W6684818038, https://openalex.org/W2804338221, https://openalex.org/W2442686365, https://openalex.org/W6767513769, https://openalex.org/W3199704160, https://openalex.org/W2522882154, https://openalex.org/W6662394131, https://openalex.org/W6680611640, https://openalex.org/W6767803712, https://openalex.org/W6748986372, https://openalex.org/W4250378684, https://openalex.org/W2073208932, https://openalex.org/W4248949446, https://openalex.org/W4239019441, https://openalex.org/W2913587321, https://openalex.org/W43249347, https://openalex.org/W4293355737 |
| referenced_works_count | 25 |
| abstract_inverted_index.- | 94 |
| abstract_inverted_index.AI | 58, 92 |
| abstract_inverted_index.as | 123, 222 |
| abstract_inverted_index.in | 39, 191, 227 |
| abstract_inverted_index.it | 221 |
| abstract_inverted_index.of | 2, 15, 20, 50, 89, 134, 139, 151, 165, 178, 193, 206, 229 |
| abstract_inverted_index.on | 45, 61, 99 |
| abstract_inverted_index.to | 26, 42, 65, 128, 162, 174, 183, 232 |
| abstract_inverted_index.The | 0, 76, 143, 198 |
| abstract_inverted_index.and | 29, 48, 56, 67, 73, 87, 105, 117, 137, 148, 157, 160 |
| abstract_inverted_index.but | 17 |
| abstract_inverted_index.for | 23, 126, 236 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.its | 106, 213, 230 |
| abstract_inverted_index.the | 3, 9, 13, 24, 31, 40, 46, 71, 74, 79, 84, 90, 132, 152, 163, 166, 175, 194, 202, 209, 217, 225, 233, 237 |
| abstract_inverted_index.via | 83 |
| abstract_inverted_index.Grid | 115 |
| abstract_inverted_index.This | 35 |
| abstract_inverted_index.also | 145 |
| abstract_inverted_index.cost | 187 |
| abstract_inverted_index.fake | 140 |
| abstract_inverted_index.gain | 129 |
| abstract_inverted_index.into | 131 |
| abstract_inverted_index.lieu | 192 |
| abstract_inverted_index.than | 216, 224 |
| abstract_inverted_index.with | 12, 54, 103, 114, 121, 201 |
| abstract_inverted_index.Early | 118 |
| abstract_inverted_index.Large | 169 |
| abstract_inverted_index.Trees | 112 |
| abstract_inverted_index.based | 98 |
| abstract_inverted_index.beget | 30 |
| abstract_inverted_index.block | 100 |
| abstract_inverted_index.bogus | 189 |
| abstract_inverted_index.delve | 43 |
| abstract_inverted_index.large | 62, 185 |
| abstract_inverted_index.model | 97 |
| abstract_inverted_index.paper | 144 |
| abstract_inverted_index.scale | 63 |
| abstract_inverted_index.score | 205 |
| abstract_inverted_index.sham. | 75 |
| abstract_inverted_index.terms | 228 |
| abstract_inverted_index.times | 180 |
| abstract_inverted_index.using | 168 |
| abstract_inverted_index.(LLMs) | 172 |
| abstract_inverted_index.0.1462 | 207 |
| abstract_inverted_index.Amazon | 195 |
| abstract_inverted_index.Models | 171 |
| abstract_inverted_index.Search | 116 |
| abstract_inverted_index.Turks. | 197 |
| abstract_inverted_index.behold | 28 |
| abstract_inverted_index.better | 215, 223 |
| abstract_inverted_index.deeper | 44 |
| abstract_inverted_index.metric | 125 |
| abstract_inverted_index.models | 59, 93 |
| abstract_inverted_index.online | 10, 32, 52 |
| abstract_inverted_index.proves | 212 |
| abstract_inverted_index.recent | 179 |
| abstract_inverted_index.scale, | 186 |
| abstract_inverted_index.value. | 240 |
| abstract_inverted_index.ROC-AUC | 226 |
| abstract_inverted_index.aspects | 150 |
| abstract_inverted_index.between | 70 |
| abstract_inverted_index.dataset | 153, 167 |
| abstract_inverted_index.descent | 102 |
| abstract_inverted_index.further | 107 |
| abstract_inverted_index.genuine | 72 |
| abstract_inverted_index.holdout | 204 |
| abstract_inverted_index.insight | 130 |
| abstract_inverted_index.matured | 55 |
| abstract_inverted_index.obscure | 16 |
| abstract_inverted_index.posting | 19 |
| abstract_inverted_index.produce | 184 |
| abstract_inverted_index.product | 21, 33, 81, 141 |
| abstract_inverted_index.results | 199 |
| abstract_inverted_index.reviews | 6, 22, 53, 82, 190 |
| abstract_inverted_index.through | 110 |
| abstract_inverted_index.Language | 170 |
| abstract_inverted_index.LightGBM | 111, 210 |
| abstract_inverted_index.Log-Loss | 122, 203 |
| abstract_inverted_index.Stopping | 119 |
| abstract_inverted_index.advanced | 57 |
| abstract_inverted_index.analysis | 49, 88 |
| abstract_inverted_index.believe, | 27 |
| abstract_inverted_index.coherent | 161 |
| abstract_inverted_index.creation | 164 |
| abstract_inverted_index.datasets | 64 |
| abstract_inverted_index.inherent | 159 |
| abstract_inverted_index.juncture | 177 |
| abstract_inverted_index.machines | 182 |
| abstract_inverted_index.mandates | 36 |
| abstract_inverted_index.matching | 238 |
| abstract_inverted_index.obtained | 200 |
| abstract_inverted_index.ontology | 11 |
| abstract_inverted_index.quality, | 154 |
| abstract_inverted_index.research | 38, 77 |
| abstract_inverted_index.reviews. | 142 |
| abstract_inverted_index.support, | 120 |
| abstract_inverted_index.Wordcloud | 104 |
| abstract_inverted_index.befitting | 91 |
| abstract_inverted_index.conundrum | 1 |
| abstract_inverted_index.customers | 25 |
| abstract_inverted_index.deceiving | 51 |
| abstract_inverted_index.deceptive | 5 |
| abstract_inverted_index.demarcate | 69 |
| abstract_inverted_index.diagnosis | 136 |
| abstract_inverted_index.direction | 41 |
| abstract_inverted_index.effective | 188 |
| abstract_inverted_index.intrinsic | 173 |
| abstract_inverted_index.obsession | 14 |
| abstract_inverted_index.overruled | 8 |
| abstract_inverted_index.promoting | 181 |
| abstract_inverted_index.proximity | 231 |
| abstract_inverted_index.stability | 156 |
| abstract_inverted_index.standards | 158 |
| abstract_inverted_index.zeitgeist | 176 |
| abstract_inverted_index.Classifier | 96, 113 |
| abstract_inverted_index.Mechanical | 196 |
| abstract_inverted_index.assessment | 86 |
| abstract_inverted_index.classifier | 211 |
| abstract_inverted_index.conforming | 208, 220 |
| abstract_inverted_index.coordinate | 101 |
| abstract_inverted_index.delineates | 146 |
| abstract_inverted_index.detection, | 135 |
| abstract_inverted_index.diminution | 138 |
| abstract_inverted_index.functional | 60 |
| abstract_inverted_index.marketing. | 34 |
| abstract_inverted_index.obligatory | 18 |
| abstract_inverted_index.prediction | 234 |
| abstract_inverted_index.ubiquitous | 4 |
| abstract_inverted_index.Elastic-Net | 218 |
| abstract_inverted_index.Elastic-net | 95 |
| abstract_inverted_index.actual/true | 239 |
| abstract_inverted_index.affirmative | 149 |
| abstract_inverted_index.application | 47 |
| abstract_inverted_index.classifier, | 219 |
| abstract_inverted_index.counteracts | 78 |
| abstract_inverted_index.effectively | 66 |
| abstract_inverted_index.efficiently | 68 |
| abstract_inverted_index.enhancement | 109 |
| abstract_inverted_index.intricacies | 133 |
| abstract_inverted_index.performance | 108, 124, 214 |
| abstract_inverted_index.probability | 235 |
| abstract_inverted_index.statistics, | 155 |
| abstract_inverted_index.contemporary | 37 |
| abstract_inverted_index.applications, | 85 |
| abstract_inverted_index.counterfeiting | 80 |
| abstract_inverted_index.discriminative | 147 |
| abstract_inverted_index.experimentation | 127 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5075207877 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I55016150 |
| citation_normalized_percentile.value | 0.06261385 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |