Checkmate: Zero-Overhead Model Checkpointing via Network Gradient Replication Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.13522
This paper presents Checkmate, a system that enables per-iteration checkpointing in DNN training without any training slowdown. The traditional approach to checkpointing requires a pause in training to copy model states to a separate location, allowing the state to be restored in the event of failure. This approach fundamentally has a tradeoff between the frequency of checkpoints and the cost of a failure. We avoid this tradeoff; our key insight is that in data-parallel training, all information necessary to create a checkpoint already exists in the network as gradients. Our core contribution is a new multicast abstraction that simultaneously delivers gradients to a separate CPU-based shadow cluster. The shadow maintains a checkpoint by applying those gradients to a copy of the model. Our evaluation shows that Checkmate performs per-iteration checkpointing with training throughput comparable to an ideal no-checkpoint baseline. Checkmate achieves 5 to 34.5x more frequent checkpointing compared to state-of-the-art checkpointing systems, resulting in 80% to 97.1% reduction in repeated work per failure. At the same checkpointing frequency, Checkmate delivers 1.3x to 6.5x throughput compared to other systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.13522
- https://arxiv.org/pdf/2507.13522
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416833434
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416833434Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.13522Digital Object Identifier
- Title
-
Checkmate: Zero-Overhead Model Checkpointing via Network Gradient ReplicationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-17Full publication date if available
- Authors
-
Ankit Bhardwaj, Weiyang Wang, Manya GhobadiList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.13522Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.13522Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.13522Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416833434 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.13522 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.13522 |
| ids.openalex | https://openalex.org/W4416833434 |
| fwci | |
| type | preprint |
| title | Checkmate: Zero-Overhead Model Checkpointing via Network Gradient Replication |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.13522 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.13522 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.13522 |
| locations[1].id | doi:10.48550/arxiv.2507.13522 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.13522 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5056797683 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5094-9711 |
| authorships[0].author.display_name | Ankit Bhardwaj |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhardwaj, Ankit |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5042429449 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9036-8543 |
| authorships[1].author.display_name | Weiyang Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Weiyang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058729992 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4095-1519 |
| authorships[2].author.display_name | Manya Ghobadi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ghobadi, Manya |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.13522 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Checkmate: Zero-Overhead Model Checkpointing via Network Gradient Replication |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-01T01:23:19.965064 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.13522 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.13522 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.13522 |
| primary_location.id | pmh:oai:arXiv.org:2507.13522 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.13522 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.13522 |
| publication_date | 2025-07-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 141 |
| abstract_inverted_index.a | 4, 23, 32, 50, 61, 80, 93, 102, 110, 117 |
| abstract_inverted_index.At | 163 |
| abstract_inverted_index.We | 63 |
| abstract_inverted_index.an | 135 |
| abstract_inverted_index.as | 87 |
| abstract_inverted_index.be | 39 |
| abstract_inverted_index.by | 112 |
| abstract_inverted_index.in | 10, 25, 41, 72, 84, 153, 158 |
| abstract_inverted_index.is | 70, 92 |
| abstract_inverted_index.of | 44, 55, 60, 119 |
| abstract_inverted_index.to | 20, 27, 31, 38, 78, 101, 116, 134, 142, 148, 155, 171, 175 |
| abstract_inverted_index.80% | 154 |
| abstract_inverted_index.DNN | 11 |
| abstract_inverted_index.Our | 89, 122 |
| abstract_inverted_index.The | 17, 107 |
| abstract_inverted_index.all | 75 |
| abstract_inverted_index.and | 57 |
| abstract_inverted_index.any | 14 |
| abstract_inverted_index.has | 49 |
| abstract_inverted_index.key | 68 |
| abstract_inverted_index.new | 94 |
| abstract_inverted_index.our | 67 |
| abstract_inverted_index.per | 161 |
| abstract_inverted_index.the | 36, 42, 53, 58, 85, 120, 164 |
| abstract_inverted_index.1.3x | 170 |
| abstract_inverted_index.6.5x | 172 |
| abstract_inverted_index.This | 0, 46 |
| abstract_inverted_index.copy | 28, 118 |
| abstract_inverted_index.core | 90 |
| abstract_inverted_index.cost | 59 |
| abstract_inverted_index.more | 144 |
| abstract_inverted_index.same | 165 |
| abstract_inverted_index.that | 6, 71, 97, 125 |
| abstract_inverted_index.this | 65 |
| abstract_inverted_index.with | 130 |
| abstract_inverted_index.work | 160 |
| abstract_inverted_index.34.5x | 143 |
| abstract_inverted_index.97.1% | 156 |
| abstract_inverted_index.avoid | 64 |
| abstract_inverted_index.event | 43 |
| abstract_inverted_index.ideal | 136 |
| abstract_inverted_index.model | 29 |
| abstract_inverted_index.other | 176 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.pause | 24 |
| abstract_inverted_index.shows | 124 |
| abstract_inverted_index.state | 37 |
| abstract_inverted_index.those | 114 |
| abstract_inverted_index.create | 79 |
| abstract_inverted_index.exists | 83 |
| abstract_inverted_index.model. | 121 |
| abstract_inverted_index.shadow | 105, 108 |
| abstract_inverted_index.states | 30 |
| abstract_inverted_index.system | 5 |
| abstract_inverted_index.already | 82 |
| abstract_inverted_index.between | 52 |
| abstract_inverted_index.enables | 7 |
| abstract_inverted_index.insight | 69 |
| abstract_inverted_index.network | 86 |
| abstract_inverted_index.without | 13 |
| abstract_inverted_index.achieves | 140 |
| abstract_inverted_index.allowing | 35 |
| abstract_inverted_index.applying | 113 |
| abstract_inverted_index.approach | 19, 47 |
| abstract_inverted_index.cluster. | 106 |
| abstract_inverted_index.compared | 147, 174 |
| abstract_inverted_index.delivers | 99, 169 |
| abstract_inverted_index.failure. | 45, 62, 162 |
| abstract_inverted_index.frequent | 145 |
| abstract_inverted_index.performs | 127 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.repeated | 159 |
| abstract_inverted_index.requires | 22 |
| abstract_inverted_index.restored | 40 |
| abstract_inverted_index.separate | 33, 103 |
| abstract_inverted_index.systems, | 151 |
| abstract_inverted_index.systems. | 177 |
| abstract_inverted_index.tradeoff | 51 |
| abstract_inverted_index.training | 12, 15, 26, 131 |
| abstract_inverted_index.CPU-based | 104 |
| abstract_inverted_index.Checkmate | 126, 139, 168 |
| abstract_inverted_index.baseline. | 138 |
| abstract_inverted_index.frequency | 54 |
| abstract_inverted_index.gradients | 100, 115 |
| abstract_inverted_index.location, | 34 |
| abstract_inverted_index.maintains | 109 |
| abstract_inverted_index.multicast | 95 |
| abstract_inverted_index.necessary | 77 |
| abstract_inverted_index.reduction | 157 |
| abstract_inverted_index.resulting | 152 |
| abstract_inverted_index.slowdown. | 16 |
| abstract_inverted_index.tradeoff; | 66 |
| abstract_inverted_index.training, | 74 |
| abstract_inverted_index.Checkmate, | 3 |
| abstract_inverted_index.checkpoint | 81, 111 |
| abstract_inverted_index.comparable | 133 |
| abstract_inverted_index.evaluation | 123 |
| abstract_inverted_index.frequency, | 167 |
| abstract_inverted_index.gradients. | 88 |
| abstract_inverted_index.throughput | 132, 173 |
| abstract_inverted_index.abstraction | 96 |
| abstract_inverted_index.checkpoints | 56 |
| abstract_inverted_index.information | 76 |
| abstract_inverted_index.traditional | 18 |
| abstract_inverted_index.contribution | 91 |
| abstract_inverted_index.checkpointing | 9, 21, 129, 146, 150, 166 |
| abstract_inverted_index.data-parallel | 73 |
| abstract_inverted_index.fundamentally | 48 |
| abstract_inverted_index.no-checkpoint | 137 |
| abstract_inverted_index.per-iteration | 8, 128 |
| abstract_inverted_index.simultaneously | 98 |
| abstract_inverted_index.state-of-the-art | 149 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |