Chip Analysis for Tool Wear Monitoring in Machining: A Deep Learning Approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3443517
Recent strides in integrating artificial intelligence (AI) with production systems align with the trend towards highly automated manufacturing, demanding smarter machinery. This dovetails with the overarching vision of Industry 4.0, moving beyond conventional models towards employing AI for real-time modeling of production processes, enabling adaptable and learning-enabled models. This study focuses on leveraging cutting-edge deep learning techniques to monitor and classify tool wear using authentic image data from machining processes. Various deep learning algorithms, including CNN, AlexNet, EfficientNetB0, MobileNetV2, CoAtNet-0, and ResNet18, are explored for monitoring and measuring wear through images of machining chips. The collected images of machining chips are categorized as ‘Accepted’, ‘Unaccepted’, and ‘Optimal’. Due to imbalanced datasets, the study investigates two distinct strategies: upsampling and downsampling. The study also aimes to enhance sensitivity for a specific minority class to meet industrial requirements. The study showed that upsampling enhanced accuracy and almost fulfilled the stated requirements, whereas downsampling did not achieve the desired outcomes. The study evaluates and compares the effectiveness of recently introduced deep learning algorithms with other CNN-based architectures in classifying tool wear states in real-world scenarios. It sheds light on the challenges faced by the machining industry, particularly the prevalent issue of class imbalance in real-world machining data. The observed results indicate that ResNet18 and AlexNet outperform other algorithms, achieving a weighted average accuracy of 96% for both multiclass and binary classification problems when considering upsampled datasets. Consequently, the study concludes that both ResNet18 and AlexNet demonstrate adaptability to class imbalances, generalization to real-world machining scenarios, and competitive accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3443517
- OA Status
- gold
- Cited By
- 6
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401567571
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401567571Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3443517Digital Object Identifier
- Title
-
Chip Analysis for Tool Wear Monitoring in Machining: A Deep Learning ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Atiq Ur Rehman, Tahira Salwa Rabbi Nishat, Mobyen Uddin Ahmed, Shahina Begum, Abhishek RanjanList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3443517Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3443517Direct OA link when available
- Concepts
-
Machining, Computer science, Chip, Tool wear, Engineering, Mechanical engineering, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401567571 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3443517 |
| ids.doi | https://doi.org/10.1109/access.2024.3443517 |
| ids.openalex | https://openalex.org/W4401567571 |
| fwci | 2.44991961 |
| type | article |
| title | Chip Analysis for Tool Wear Monitoring in Machining: A Deep Learning Approach |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 112689 |
| biblio.first_page | 112672 |
| topics[0].id | https://openalex.org/T10188 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Advanced machining processes and optimization |
| topics[1].id | https://openalex.org/T11301 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Surface Polishing Techniques |
| topics[2].id | https://openalex.org/T14117 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9947999715805054 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Integrated Circuits and Semiconductor Failure Analysis |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1835 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1979 |
| concepts[0].id | https://openalex.org/C523214423 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7063738107681274 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192047 |
| concepts[0].display_name | Machining |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5255017280578613 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C165005293 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5081205368041992 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1074500 |
| concepts[2].display_name | Chip |
| concepts[3].id | https://openalex.org/C2776450708 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4111140966415405 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6008734 |
| concepts[3].display_name | Tool wear |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.210508793592453 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| concepts[5].id | https://openalex.org/C78519656 |
| concepts[5].level | 1 |
| concepts[5].score | 0.20511436462402344 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[5].display_name | Mechanical engineering |
| concepts[6].id | https://openalex.org/C76155785 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09487053751945496 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[6].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/machining |
| keywords[0].score | 0.7063738107681274 |
| keywords[0].display_name | Machining |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5255017280578613 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/chip |
| keywords[2].score | 0.5081205368041992 |
| keywords[2].display_name | Chip |
| keywords[3].id | https://openalex.org/keywords/tool-wear |
| keywords[3].score | 0.4111140966415405 |
| keywords[3].display_name | Tool wear |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.210508793592453 |
| keywords[4].display_name | Engineering |
| keywords[5].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[5].score | 0.20511436462402344 |
| keywords[5].display_name | Mechanical engineering |
| keywords[6].id | https://openalex.org/keywords/telecommunications |
| keywords[6].score | 0.09487053751945496 |
| keywords[6].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3443517 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3443517 |
| locations[1].id | pmh:oai:doaj.org/article:c1786b5a6ea248e7ac789f043b8491af |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 112672-112689 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/c1786b5a6ea248e7ac789f043b8491af |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5053314319 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0248-7919 |
| authorships[0].author.display_name | Atiq Ur Rehman |
| authorships[0].affiliations[0].raw_affiliation_string | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Atiq Ur Rehman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden |
| authorships[1].author.id | https://openalex.org/A5106504914 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Tahira Salwa Rabbi Nishat |
| authorships[1].affiliations[0].raw_affiliation_string | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tahira Salwa Rabbi Nishat |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden |
| authorships[2].author.id | https://openalex.org/A5007258873 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1953-6086 |
| authorships[2].author.display_name | Mobyen Uddin Ahmed |
| authorships[2].affiliations[0].raw_affiliation_string | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mobyen Uddin Ahmed |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden |
| authorships[3].author.id | https://openalex.org/A5036681394 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1212-7637 |
| authorships[3].author.display_name | Shahina Begum |
| authorships[3].affiliations[0].raw_affiliation_string | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shahina Begum |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden |
| authorships[4].author.id | https://openalex.org/A5107790890 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7286-3540 |
| authorships[4].author.display_name | Abhishek Ranjan |
| authorships[4].affiliations[0].raw_affiliation_string | Research and Development Team, SECO Tools AB, Västmanland, Sweden |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Abhishek Ranjan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Research and Development Team, SECO Tools AB, Västmanland, Sweden |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3443517 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Chip Analysis for Tool Wear Monitoring in Machining: A Deep Learning Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10188 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Advanced machining processes and optimization |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2803338891, https://openalex.org/W2043267898, https://openalex.org/W2112229447, https://openalex.org/W2036155574, https://openalex.org/W2621319375, https://openalex.org/W4319073490, https://openalex.org/W1993945344, https://openalex.org/W2923714506 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3443517 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3443517 |
| primary_location.id | doi:10.1109/access.2024.3443517 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3443517 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3034087826, https://openalex.org/W3014918136, https://openalex.org/W4200318892, https://openalex.org/W3153665901, https://openalex.org/W2792821249, https://openalex.org/W2548146388, https://openalex.org/W3108770129, https://openalex.org/W2000304567, https://openalex.org/W2510249824, https://openalex.org/W2988017727, https://openalex.org/W1634809829, https://openalex.org/W3174221070, https://openalex.org/W3005924044, https://openalex.org/W6735430541, https://openalex.org/W4378876765, https://openalex.org/W2888663528, https://openalex.org/W2584792247, https://openalex.org/W2032596512, https://openalex.org/W4380302302, https://openalex.org/W6796931752, https://openalex.org/W1987074680, https://openalex.org/W1999991347, https://openalex.org/W1981870189, https://openalex.org/W2044797813, https://openalex.org/W3012475532, https://openalex.org/W2517876845, https://openalex.org/W4319319086, https://openalex.org/W6762718338, https://openalex.org/W3179869055, https://openalex.org/W3179658769, https://openalex.org/W4214493665, https://openalex.org/W4295122555, https://openalex.org/W4381510166, https://openalex.org/W2914922393, https://openalex.org/W3208788147, https://openalex.org/W4224926139, https://openalex.org/W2194775991, https://openalex.org/W6684191040, https://openalex.org/W2108598243, https://openalex.org/W2963163009, https://openalex.org/W6737664043, https://openalex.org/W4200122681, https://openalex.org/W2148143831, https://openalex.org/W4297775537, https://openalex.org/W2599439153 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 128, 216 |
| abstract_inverted_index.AI | 36 |
| abstract_inverted_index.It | 182 |
| abstract_inverted_index.as | 102 |
| abstract_inverted_index.by | 189 |
| abstract_inverted_index.in | 2, 174, 179, 200 |
| abstract_inverted_index.of | 27, 40, 91, 97, 164, 197, 220 |
| abstract_inverted_index.on | 51, 185 |
| abstract_inverted_index.to | 57, 108, 124, 132, 244, 248 |
| abstract_inverted_index.96% | 221 |
| abstract_inverted_index.Due | 107 |
| abstract_inverted_index.The | 94, 120, 136, 157, 204 |
| abstract_inverted_index.and | 45, 59, 80, 86, 105, 118, 143, 160, 210, 225, 240, 252 |
| abstract_inverted_index.are | 82, 100 |
| abstract_inverted_index.did | 151 |
| abstract_inverted_index.for | 37, 84, 127, 222 |
| abstract_inverted_index.not | 152 |
| abstract_inverted_index.the | 12, 24, 111, 146, 154, 162, 186, 190, 194, 234 |
| abstract_inverted_index.two | 114 |
| abstract_inverted_index.(AI) | 6 |
| abstract_inverted_index.4.0, | 29 |
| abstract_inverted_index.CNN, | 75 |
| abstract_inverted_index.This | 21, 48 |
| abstract_inverted_index.also | 122 |
| abstract_inverted_index.both | 223, 238 |
| abstract_inverted_index.data | 66 |
| abstract_inverted_index.deep | 54, 71, 167 |
| abstract_inverted_index.from | 67 |
| abstract_inverted_index.meet | 133 |
| abstract_inverted_index.that | 139, 208, 237 |
| abstract_inverted_index.tool | 61, 176 |
| abstract_inverted_index.wear | 62, 88, 177 |
| abstract_inverted_index.when | 229 |
| abstract_inverted_index.with | 7, 11, 23, 170 |
| abstract_inverted_index.aimes | 123 |
| abstract_inverted_index.align | 10 |
| abstract_inverted_index.chips | 99 |
| abstract_inverted_index.class | 131, 198, 245 |
| abstract_inverted_index.data. | 203 |
| abstract_inverted_index.faced | 188 |
| abstract_inverted_index.image | 65 |
| abstract_inverted_index.issue | 196 |
| abstract_inverted_index.light | 184 |
| abstract_inverted_index.other | 171, 213 |
| abstract_inverted_index.sheds | 183 |
| abstract_inverted_index.study | 49, 112, 121, 137, 158, 235 |
| abstract_inverted_index.trend | 13 |
| abstract_inverted_index.using | 63 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.almost | 144 |
| abstract_inverted_index.beyond | 31 |
| abstract_inverted_index.binary | 226 |
| abstract_inverted_index.chips. | 93 |
| abstract_inverted_index.highly | 15 |
| abstract_inverted_index.images | 90, 96 |
| abstract_inverted_index.models | 33 |
| abstract_inverted_index.moving | 30 |
| abstract_inverted_index.showed | 138 |
| abstract_inverted_index.stated | 147 |
| abstract_inverted_index.states | 178 |
| abstract_inverted_index.vision | 26 |
| abstract_inverted_index.AlexNet | 211, 241 |
| abstract_inverted_index.Various | 70 |
| abstract_inverted_index.achieve | 153 |
| abstract_inverted_index.average | 218 |
| abstract_inverted_index.desired | 155 |
| abstract_inverted_index.enhance | 125 |
| abstract_inverted_index.focuses | 50 |
| abstract_inverted_index.models. | 47 |
| abstract_inverted_index.monitor | 58 |
| abstract_inverted_index.results | 206 |
| abstract_inverted_index.smarter | 19 |
| abstract_inverted_index.strides | 1 |
| abstract_inverted_index.systems | 9 |
| abstract_inverted_index.through | 89 |
| abstract_inverted_index.towards | 14, 34 |
| abstract_inverted_index.whereas | 149 |
| abstract_inverted_index.AlexNet, | 76 |
| abstract_inverted_index.Industry | 28 |
| abstract_inverted_index.ResNet18 | 209, 239 |
| abstract_inverted_index.accuracy | 142, 219 |
| abstract_inverted_index.classify | 60 |
| abstract_inverted_index.compares | 161 |
| abstract_inverted_index.distinct | 115 |
| abstract_inverted_index.enabling | 43 |
| abstract_inverted_index.enhanced | 141 |
| abstract_inverted_index.explored | 83 |
| abstract_inverted_index.indicate | 207 |
| abstract_inverted_index.learning | 55, 72, 168 |
| abstract_inverted_index.minority | 130 |
| abstract_inverted_index.modeling | 39 |
| abstract_inverted_index.observed | 205 |
| abstract_inverted_index.problems | 228 |
| abstract_inverted_index.recently | 165 |
| abstract_inverted_index.specific | 129 |
| abstract_inverted_index.weighted | 217 |
| abstract_inverted_index.CNN-based | 172 |
| abstract_inverted_index.ResNet18, | 81 |
| abstract_inverted_index.accuracy. | 254 |
| abstract_inverted_index.achieving | 215 |
| abstract_inverted_index.adaptable | 44 |
| abstract_inverted_index.authentic | 64 |
| abstract_inverted_index.automated | 16 |
| abstract_inverted_index.collected | 95 |
| abstract_inverted_index.concludes | 236 |
| abstract_inverted_index.datasets, | 110 |
| abstract_inverted_index.datasets. | 232 |
| abstract_inverted_index.demanding | 18 |
| abstract_inverted_index.dovetails | 22 |
| abstract_inverted_index.employing | 35 |
| abstract_inverted_index.evaluates | 159 |
| abstract_inverted_index.fulfilled | 145 |
| abstract_inverted_index.imbalance | 199 |
| abstract_inverted_index.including | 74 |
| abstract_inverted_index.industry, | 192 |
| abstract_inverted_index.machining | 68, 92, 98, 191, 202, 250 |
| abstract_inverted_index.measuring | 87 |
| abstract_inverted_index.outcomes. | 156 |
| abstract_inverted_index.prevalent | 195 |
| abstract_inverted_index.real-time | 38 |
| abstract_inverted_index.upsampled | 231 |
| abstract_inverted_index.CoAtNet-0, | 79 |
| abstract_inverted_index.algorithms | 169 |
| abstract_inverted_index.artificial | 4 |
| abstract_inverted_index.challenges | 187 |
| abstract_inverted_index.imbalanced | 109 |
| abstract_inverted_index.industrial | 134 |
| abstract_inverted_index.introduced | 166 |
| abstract_inverted_index.leveraging | 52 |
| abstract_inverted_index.machinery. | 20 |
| abstract_inverted_index.monitoring | 85 |
| abstract_inverted_index.multiclass | 224 |
| abstract_inverted_index.outperform | 212 |
| abstract_inverted_index.processes, | 42 |
| abstract_inverted_index.processes. | 69 |
| abstract_inverted_index.production | 8, 41 |
| abstract_inverted_index.real-world | 180, 201, 249 |
| abstract_inverted_index.scenarios, | 251 |
| abstract_inverted_index.scenarios. | 181 |
| abstract_inverted_index.techniques | 56 |
| abstract_inverted_index.upsampling | 117, 140 |
| abstract_inverted_index.algorithms, | 73, 214 |
| abstract_inverted_index.categorized | 101 |
| abstract_inverted_index.classifying | 175 |
| abstract_inverted_index.competitive | 253 |
| abstract_inverted_index.considering | 230 |
| abstract_inverted_index.demonstrate | 242 |
| abstract_inverted_index.imbalances, | 246 |
| abstract_inverted_index.integrating | 3 |
| abstract_inverted_index.overarching | 25 |
| abstract_inverted_index.sensitivity | 126 |
| abstract_inverted_index.strategies: | 116 |
| abstract_inverted_index.MobileNetV2, | 78 |
| abstract_inverted_index.adaptability | 243 |
| abstract_inverted_index.conventional | 32 |
| abstract_inverted_index.cutting-edge | 53 |
| abstract_inverted_index.downsampling | 150 |
| abstract_inverted_index.intelligence | 5 |
| abstract_inverted_index.investigates | 113 |
| abstract_inverted_index.particularly | 193 |
| abstract_inverted_index.Consequently, | 233 |
| abstract_inverted_index.architectures | 173 |
| abstract_inverted_index.downsampling. | 119 |
| abstract_inverted_index.effectiveness | 163 |
| abstract_inverted_index.requirements, | 148 |
| abstract_inverted_index.requirements. | 135 |
| abstract_inverted_index.classification | 227 |
| abstract_inverted_index.generalization | 247 |
| abstract_inverted_index.manufacturing, | 17 |
| abstract_inverted_index.EfficientNetB0, | 77 |
| abstract_inverted_index.learning-enabled | 46 |
| abstract_inverted_index.‘Optimal’. | 106 |
| abstract_inverted_index.‘Accepted’, | 103 |
| abstract_inverted_index.‘Unaccepted’, | 104 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.83314707 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |