ChromBPNet models and data: Transcription factor stoichiometry, motif affinity and syntax regulate single cell chromatin dynamics during fibroblast reprogramming to pluripotency Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8299710
This record contains ChromBPNet models and data used to train the models for the paper "Transcription factor stoichiometry, motif affinity and syntax regulate single cell chromatin dynamics during fibroblast reprogramming to pluripotency" by Nair, Ameen et al. `data` contains bigwigs and regions (peaks + non-peaks) used for training each of the models. See `data/README.txt` for more details. Models: Loading the model: The models were trained using tf1.14. The models are provided in h5 format for tf1.14 (py3.7) and SavedModel format for tf2.X. tf2.X tested only for py3.8-11, tf2.8-13. To load the models in tf1.14: model = tf.keras.models.load_model("path/to/model.h5") In tf2: model = tf.keras.models.load_model("path/to/model_dir") If all fails, you can load the architecture as provided in `model_arch.py` with default parameters (`bpnet_seq` for bias model and `chrombpnet` for chrombpnet model), and then load the weights using `model.load_weights` from the weights provided in the `weights` directory. Usage: The bias models take as input one-hot sequence of length 2000. It has 2 outputs, a vector of logits of length 2000, and 1 logcounts scalar: # seq_one_hot of length B x 2000 x 4 out_bias_logits, out_bias_logcounts = bias_model.predict(seq_one_hot) # out_bias_logits: B x 2000 # out_bias_logcounts: B x 1 The ChromBPNet model takes as input a one-hot sequence of length 2000, bias logits of length 2000 and bias log-counts scalar. It has the same output types as the bias model. To run the chrombpnet model to obtain predictions: pred_profile, pred_logcounts = chrombpnet_model.predict([seq_one_hot, out_bias_logits, out_bias_logcounts]) # pred_profile: B x 2000 # pred_logcounts: B x 1 If you wish to obtain the "de-biased" predictions (see Methods), simply pass in zeros instead of the bias model predictions as: pred_profile_debiased, pred_logcounts_debiased = chrombpnet_model.predict([seq_one_hot, np.zeros((seq_one_hot.shape[0], 2000)), np.zeros((seq_one_hot.shape[0], 1))]) To obtain predicted per-base predicted counts (with or without bias): pred_per_base_counts = scipy.special.softmax(pred_profile, axis=-1) * (np.exp(pred_logcounts)-1) # pred_per_base_counts: B x 2000 Note that in general predicted counts can't be compared across models as they are not corrected for sequencing depth. Note: All bias models used across folds are identical, except for the final intercept term in the counts output (see Methods), that is specific to each cell state, fold combination. Folds: The splits used for training the different folds are as below: Fold Test Chromosomes Validation Chromosomes 0 chr1 chr8, chr10 1 chr2, chr19 chr1 2 chr3, chr20 chr2, chr19 3 chr6, chr13, chr22 chr3, chr20 4 chr5, chr16, chrY chr6, chr13, chr22 5 chr4, chr15, chr21 chr5, chr16, chrY 6 chr7, chr18, chr14 chr4, chr15, chr21 7 chr11, chr17, chrX chr7, chr18, chr14 8 chr9, chr12 chr11, chr17, chrX 9 chr8, chr10 chr9, chr12 Remaining chromosomes were used as the training chromosome for each fold.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.8299710
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393687429
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393687429Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.8299710Digital Object Identifier
- Title
-
ChromBPNet models and data: Transcription factor stoichiometry, motif affinity and syntax regulate single cell chromatin dynamics during fibroblast reprogramming to pluripotencyWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-01Full publication date if available
- Authors
-
Surag Nair, Mohamed Ameen, Ke Wang, Anshul KundajeList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.8299710Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.8299710Direct OA link when available
- Concepts
-
Reprogramming, Transcription factor, Chromatin, Biology, Motif (music), Fibroblast, Cell biology, Computational biology, Cell, Genetics, Cell culture, Gene, Acoustics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393687429 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.8299710 |
| ids.doi | https://doi.org/10.5281/zenodo.8299710 |
| ids.openalex | https://openalex.org/W4393687429 |
| fwci | |
| type | dataset |
| title | ChromBPNet models and data: Transcription factor stoichiometry, motif affinity and syntax regulate single cell chromatin dynamics during fibroblast reprogramming to pluripotency |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10505 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.6735000014305115 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Pluripotent Stem Cells Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C77255625 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8436596393585205 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q402093 |
| concepts[0].display_name | Reprogramming |
| concepts[1].id | https://openalex.org/C86339819 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6474654674530029 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[1].display_name | Transcription factor |
| concepts[2].id | https://openalex.org/C83640560 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6103368997573853 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q180951 |
| concepts[2].display_name | Chromatin |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4709742069244385 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C32276052 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46445131301879883 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q908349 |
| concepts[4].display_name | Motif (music) |
| concepts[5].id | https://openalex.org/C2780381497 |
| concepts[5].level | 3 |
| concepts[5].score | 0.43141037225723267 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q463418 |
| concepts[5].display_name | Fibroblast |
| concepts[6].id | https://openalex.org/C95444343 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3937462568283081 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7141 |
| concepts[6].display_name | Cell biology |
| concepts[7].id | https://openalex.org/C70721500 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3668874204158783 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[7].display_name | Computational biology |
| concepts[8].id | https://openalex.org/C1491633281 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3321227431297302 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7868 |
| concepts[8].display_name | Cell |
| concepts[9].id | https://openalex.org/C54355233 |
| concepts[9].level | 1 |
| concepts[9].score | 0.27640587091445923 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[9].display_name | Genetics |
| concepts[10].id | https://openalex.org/C81885089 |
| concepts[10].level | 2 |
| concepts[10].score | 0.11369341611862183 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189082 |
| concepts[10].display_name | Cell culture |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.09975600242614746 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C24890656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[12].display_name | Acoustics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/reprogramming |
| keywords[0].score | 0.8436596393585205 |
| keywords[0].display_name | Reprogramming |
| keywords[1].id | https://openalex.org/keywords/transcription-factor |
| keywords[1].score | 0.6474654674530029 |
| keywords[1].display_name | Transcription factor |
| keywords[2].id | https://openalex.org/keywords/chromatin |
| keywords[2].score | 0.6103368997573853 |
| keywords[2].display_name | Chromatin |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.4709742069244385 |
| keywords[3].display_name | Biology |
| keywords[4].id | https://openalex.org/keywords/motif |
| keywords[4].score | 0.46445131301879883 |
| keywords[4].display_name | Motif (music) |
| keywords[5].id | https://openalex.org/keywords/fibroblast |
| keywords[5].score | 0.43141037225723267 |
| keywords[5].display_name | Fibroblast |
| keywords[6].id | https://openalex.org/keywords/cell-biology |
| keywords[6].score | 0.3937462568283081 |
| keywords[6].display_name | Cell biology |
| keywords[7].id | https://openalex.org/keywords/computational-biology |
| keywords[7].score | 0.3668874204158783 |
| keywords[7].display_name | Computational biology |
| keywords[8].id | https://openalex.org/keywords/cell |
| keywords[8].score | 0.3321227431297302 |
| keywords[8].display_name | Cell |
| keywords[9].id | https://openalex.org/keywords/genetics |
| keywords[9].score | 0.27640587091445923 |
| keywords[9].display_name | Genetics |
| keywords[10].id | https://openalex.org/keywords/cell-culture |
| keywords[10].score | 0.11369341611862183 |
| keywords[10].display_name | Cell culture |
| keywords[11].id | https://openalex.org/keywords/gene |
| keywords[11].score | 0.09975600242614746 |
| keywords[11].display_name | Gene |
| language | en |
| locations[0].id | doi:10.5281/zenodo.8299710 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.8299710 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5035797460 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6216-2457 |
| authorships[0].author.display_name | Surag Nair |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[0].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[0].institutions[0].id | https://openalex.org/I97018004 |
| authorships[0].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stanford University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Surag Nair |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Stanford University |
| authorships[1].author.id | https://openalex.org/A5103972417 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mohamed Ameen |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohamed Ameen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Stanford University |
| authorships[2].author.id | https://openalex.org/A5041332430 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5305-6791 |
| authorships[2].author.display_name | Ke Wang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[2].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[2].institutions[0].id | https://openalex.org/I97018004 |
| authorships[2].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Stanford University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kevin Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Stanford University |
| authorships[3].author.id | https://openalex.org/A5083952534 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3084-2287 |
| authorships[3].author.display_name | Anshul Kundaje |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[3].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[3].institutions[0].id | https://openalex.org/I97018004 |
| authorships[3].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Stanford University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Anshul Kundaje |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Stanford University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.8299710 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ChromBPNet models and data: Transcription factor stoichiometry, motif affinity and syntax regulate single cell chromatin dynamics during fibroblast reprogramming to pluripotency |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10505 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.6735000014305115 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Pluripotent Stem Cells Research |
| related_works | https://openalex.org/W1631979401, https://openalex.org/W2395945797, https://openalex.org/W2129470469, https://openalex.org/W2368295610, https://openalex.org/W1543102035, https://openalex.org/W1497716427, https://openalex.org/W2946692299, https://openalex.org/W3014941007, https://openalex.org/W2183075003, https://openalex.org/W2990520546 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.8299710 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.8299710 |
| primary_location.id | doi:10.5281/zenodo.8299710 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.8299710 |
| publication_date | 2023-09-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.# | 168, 181, 186, 236, 241, 291 |
| abstract_inverted_index.* | 289 |
| abstract_inverted_index.+ | 43 |
| abstract_inverted_index.0 | 362 |
| abstract_inverted_index.1 | 165, 190, 245, 366 |
| abstract_inverted_index.2 | 155, 370 |
| abstract_inverted_index.3 | 375 |
| abstract_inverted_index.4 | 176, 381 |
| abstract_inverted_index.5 | 388 |
| abstract_inverted_index.6 | 395 |
| abstract_inverted_index.7 | 402 |
| abstract_inverted_index.8 | 409 |
| abstract_inverted_index.9 | 415 |
| abstract_inverted_index.= | 95, 100, 179, 232, 269, 286 |
| abstract_inverted_index.B | 172, 183, 188, 238, 243, 293 |
| abstract_inverted_index.a | 157, 197 |
| abstract_inverted_index.x | 173, 175, 184, 189, 239, 244, 294 |
| abstract_inverted_index.If | 102, 246 |
| abstract_inverted_index.In | 97 |
| abstract_inverted_index.It | 153, 212 |
| abstract_inverted_index.To | 88, 222, 275 |
| abstract_inverted_index.as | 110, 146, 195, 218, 307, 355, 424 |
| abstract_inverted_index.be | 303 |
| abstract_inverted_index.by | 32 |
| abstract_inverted_index.et | 35 |
| abstract_inverted_index.h5 | 72 |
| abstract_inverted_index.in | 71, 92, 112, 137, 258, 298, 330 |
| abstract_inverted_index.is | 337 |
| abstract_inverted_index.of | 49, 150, 159, 161, 170, 200, 205, 261 |
| abstract_inverted_index.or | 282 |
| abstract_inverted_index.to | 8, 30, 227, 249, 339 |
| abstract_inverted_index.All | 316 |
| abstract_inverted_index.See | 52 |
| abstract_inverted_index.The | 61, 67, 142, 191, 346 |
| abstract_inverted_index.al. | 36 |
| abstract_inverted_index.all | 103 |
| abstract_inverted_index.and | 5, 20, 40, 77, 121, 126, 164, 208 |
| abstract_inverted_index.are | 69, 309, 322, 354 |
| abstract_inverted_index.as: | 266 |
| abstract_inverted_index.can | 106 |
| abstract_inverted_index.for | 12, 46, 54, 74, 80, 85, 118, 123, 312, 325, 349, 428 |
| abstract_inverted_index.has | 154, 213 |
| abstract_inverted_index.not | 310 |
| abstract_inverted_index.run | 223 |
| abstract_inverted_index.the | 10, 13, 50, 59, 90, 108, 129, 134, 138, 214, 219, 224, 251, 262, 326, 331, 351, 425 |
| abstract_inverted_index.you | 105, 247 |
| abstract_inverted_index.(see | 254, 334 |
| abstract_inverted_index.2000 | 174, 185, 207, 240, 295 |
| abstract_inverted_index.Fold | 357 |
| abstract_inverted_index.Note | 296 |
| abstract_inverted_index.Test | 358 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.bias | 119, 143, 203, 209, 220, 263, 317 |
| abstract_inverted_index.cell | 24, 341 |
| abstract_inverted_index.chr1 | 363, 369 |
| abstract_inverted_index.chrX | 405, 414 |
| abstract_inverted_index.chrY | 384, 394 |
| abstract_inverted_index.data | 6 |
| abstract_inverted_index.each | 48, 340, 429 |
| abstract_inverted_index.fold | 343 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.load | 89, 107, 128 |
| abstract_inverted_index.more | 55 |
| abstract_inverted_index.only | 84 |
| abstract_inverted_index.pass | 257 |
| abstract_inverted_index.same | 215 |
| abstract_inverted_index.take | 145 |
| abstract_inverted_index.term | 329 |
| abstract_inverted_index.tf2: | 98 |
| abstract_inverted_index.that | 297, 336 |
| abstract_inverted_index.then | 127 |
| abstract_inverted_index.they | 308 |
| abstract_inverted_index.used | 7, 45, 319, 348, 423 |
| abstract_inverted_index.were | 63, 422 |
| abstract_inverted_index.wish | 248 |
| abstract_inverted_index.with | 114 |
| abstract_inverted_index.(with | 281 |
| abstract_inverted_index.1))]) | 274 |
| abstract_inverted_index.2000, | 163, 202 |
| abstract_inverted_index.2000. | 152 |
| abstract_inverted_index.Ameen | 34 |
| abstract_inverted_index.Nair, | 33 |
| abstract_inverted_index.Note: | 315 |
| abstract_inverted_index.can't | 302 |
| abstract_inverted_index.chr10 | 365, 417 |
| abstract_inverted_index.chr12 | 411, 419 |
| abstract_inverted_index.chr14 | 398, 408 |
| abstract_inverted_index.chr19 | 368, 374 |
| abstract_inverted_index.chr2, | 367, 373 |
| abstract_inverted_index.chr20 | 372, 380 |
| abstract_inverted_index.chr21 | 391, 401 |
| abstract_inverted_index.chr22 | 378, 387 |
| abstract_inverted_index.chr3, | 371, 379 |
| abstract_inverted_index.chr4, | 389, 399 |
| abstract_inverted_index.chr5, | 382, 392 |
| abstract_inverted_index.chr6, | 376, 385 |
| abstract_inverted_index.chr7, | 396, 406 |
| abstract_inverted_index.chr8, | 364, 416 |
| abstract_inverted_index.chr9, | 410, 418 |
| abstract_inverted_index.final | 327 |
| abstract_inverted_index.fold. | 430 |
| abstract_inverted_index.folds | 321, 353 |
| abstract_inverted_index.input | 147, 196 |
| abstract_inverted_index.model | 94, 99, 120, 193, 226, 264 |
| abstract_inverted_index.motif | 18 |
| abstract_inverted_index.paper | 14 |
| abstract_inverted_index.takes | 194 |
| abstract_inverted_index.tf2.X | 82 |
| abstract_inverted_index.train | 9 |
| abstract_inverted_index.types | 217 |
| abstract_inverted_index.using | 65, 131 |
| abstract_inverted_index.zeros | 259 |
| abstract_inverted_index.(peaks | 42 |
| abstract_inverted_index.Folds: | 345 |
| abstract_inverted_index.Usage: | 141 |
| abstract_inverted_index.`data` | 37 |
| abstract_inverted_index.across | 305, 320 |
| abstract_inverted_index.below: | 356 |
| abstract_inverted_index.bias): | 284 |
| abstract_inverted_index.chr11, | 403, 412 |
| abstract_inverted_index.chr13, | 377, 386 |
| abstract_inverted_index.chr15, | 390, 400 |
| abstract_inverted_index.chr16, | 383, 393 |
| abstract_inverted_index.chr17, | 404, 413 |
| abstract_inverted_index.chr18, | 397, 407 |
| abstract_inverted_index.counts | 280, 301, 332 |
| abstract_inverted_index.depth. | 314 |
| abstract_inverted_index.during | 27 |
| abstract_inverted_index.except | 324 |
| abstract_inverted_index.factor | 16 |
| abstract_inverted_index.fails, | 104 |
| abstract_inverted_index.format | 73, 79 |
| abstract_inverted_index.length | 151, 162, 171, 201, 206 |
| abstract_inverted_index.logits | 160, 204 |
| abstract_inverted_index.model. | 221 |
| abstract_inverted_index.model: | 60 |
| abstract_inverted_index.models | 4, 11, 62, 68, 91, 144, 306, 318 |
| abstract_inverted_index.obtain | 228, 250, 276 |
| abstract_inverted_index.output | 216, 333 |
| abstract_inverted_index.record | 1 |
| abstract_inverted_index.simply | 256 |
| abstract_inverted_index.single | 23 |
| abstract_inverted_index.splits | 347 |
| abstract_inverted_index.state, | 342 |
| abstract_inverted_index.syntax | 21 |
| abstract_inverted_index.tested | 83 |
| abstract_inverted_index.tf1.14 | 75 |
| abstract_inverted_index.tf2.X. | 81 |
| abstract_inverted_index.vector | 158 |
| abstract_inverted_index.(py3.7) | 76 |
| abstract_inverted_index.2000)), | 272 |
| abstract_inverted_index.Loading | 58 |
| abstract_inverted_index.Models: | 57 |
| abstract_inverted_index.bigwigs | 39 |
| abstract_inverted_index.default | 115 |
| abstract_inverted_index.general | 299 |
| abstract_inverted_index.instead | 260 |
| abstract_inverted_index.model), | 125 |
| abstract_inverted_index.models. | 51 |
| abstract_inverted_index.one-hot | 148, 198 |
| abstract_inverted_index.regions | 41 |
| abstract_inverted_index.scalar. | 211 |
| abstract_inverted_index.scalar: | 167 |
| abstract_inverted_index.tf1.14. | 66 |
| abstract_inverted_index.tf1.14: | 93 |
| abstract_inverted_index.trained | 64 |
| abstract_inverted_index.weights | 130, 135 |
| abstract_inverted_index.without | 283 |
| abstract_inverted_index.affinity | 19 |
| abstract_inverted_index.axis=-1) | 288 |
| abstract_inverted_index.compared | 304 |
| abstract_inverted_index.contains | 2, 38 |
| abstract_inverted_index.details. | 56 |
| abstract_inverted_index.dynamics | 26 |
| abstract_inverted_index.outputs, | 156 |
| abstract_inverted_index.per-base | 278 |
| abstract_inverted_index.provided | 70, 111, 136 |
| abstract_inverted_index.regulate | 22 |
| abstract_inverted_index.sequence | 149, 199 |
| abstract_inverted_index.specific | 338 |
| abstract_inverted_index.training | 47, 350, 426 |
| abstract_inverted_index.Methods), | 255, 335 |
| abstract_inverted_index.Remaining | 420 |
| abstract_inverted_index.`weights` | 139 |
| abstract_inverted_index.chromatin | 25 |
| abstract_inverted_index.corrected | 311 |
| abstract_inverted_index.different | 352 |
| abstract_inverted_index.intercept | 328 |
| abstract_inverted_index.logcounts | 166 |
| abstract_inverted_index.predicted | 277, 279, 300 |
| abstract_inverted_index.py3.8-11, | 86 |
| abstract_inverted_index.tf2.8-13. | 87 |
| abstract_inverted_index.ChromBPNet | 3, 192 |
| abstract_inverted_index.SavedModel | 78 |
| abstract_inverted_index.Validation | 360 |
| abstract_inverted_index.chrombpnet | 124, 225 |
| abstract_inverted_index.chromosome | 427 |
| abstract_inverted_index.directory. | 140 |
| abstract_inverted_index.fibroblast | 28 |
| abstract_inverted_index.identical, | 323 |
| abstract_inverted_index.log-counts | 210 |
| abstract_inverted_index.non-peaks) | 44 |
| abstract_inverted_index.parameters | 116 |
| abstract_inverted_index.sequencing | 313 |
| abstract_inverted_index."de-biased" | 252 |
| abstract_inverted_index.Chromosomes | 359, 361 |
| abstract_inverted_index.chromosomes | 421 |
| abstract_inverted_index.predictions | 253, 265 |
| abstract_inverted_index.seq_one_hot | 169 |
| abstract_inverted_index.(`bpnet_seq` | 117 |
| abstract_inverted_index.`chrombpnet` | 122 |
| abstract_inverted_index.architecture | 109 |
| abstract_inverted_index.combination. | 344 |
| abstract_inverted_index.predictions: | 229 |
| abstract_inverted_index.pluripotency" | 31 |
| abstract_inverted_index.pred_profile, | 230 |
| abstract_inverted_index.pred_profile: | 237 |
| abstract_inverted_index.reprogramming | 29 |
| abstract_inverted_index."Transcription | 15 |
| abstract_inverted_index.pred_logcounts | 231 |
| abstract_inverted_index.stoichiometry, | 17 |
| abstract_inverted_index.`model_arch.py` | 113 |
| abstract_inverted_index.pred_logcounts: | 242 |
| abstract_inverted_index.out_bias_logits, | 177, 234 |
| abstract_inverted_index.out_bias_logits: | 182 |
| abstract_inverted_index.`data/README.txt` | 53 |
| abstract_inverted_index.out_bias_logcounts | 178 |
| abstract_inverted_index.out_bias_logcounts: | 187 |
| abstract_inverted_index.`model.load_weights` | 132 |
| abstract_inverted_index.out_bias_logcounts]) | 235 |
| abstract_inverted_index.pred_per_base_counts | 285 |
| abstract_inverted_index.pred_per_base_counts: | 292 |
| abstract_inverted_index.pred_profile_debiased, | 267 |
| abstract_inverted_index.pred_logcounts_debiased | 268 |
| abstract_inverted_index.(np.exp(pred_logcounts)-1) | 290 |
| abstract_inverted_index.bias_model.predict(seq_one_hot) | 180 |
| abstract_inverted_index.np.zeros((seq_one_hot.shape[0], | 271, 273 |
| abstract_inverted_index.scipy.special.softmax(pred_profile, | 287 |
| abstract_inverted_index.chrombpnet_model.predict([seq_one_hot, | 233, 270 |
| abstract_inverted_index.tf.keras.models.load_model("path/to/model.h5") | 96 |
| abstract_inverted_index.tf.keras.models.load_model("path/to/model_dir") | 101 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |