City-Level Foreign Direct Investment Prediction with Tabular Learning on Judicial Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.05651
To advance the United Nations Sustainable Development Goal on promoting sustained, inclusive, and sustainable economic growth, foreign direct investment (FDI) plays a crucial role in catalyzing economic expansion and fostering innovation. Precise city-level FDI prediction is quite important for local government and is commonly studied based on economic data (e.g., GDP). However, such economic data could be prone to manipulation, making predictions less reliable. To address this issue, we try to leverage large-scale judicial data which reflects judicial performance influencing local investment security and returns, for city-level FDI prediction. Based on this, we first build an index system for the evaluation of judicial performance over twelve million publicly available adjudication documents according to which a tabular dataset is reformulated. We then propose a new Tabular Learning method on Judicial Data (TLJD) for city-level FDI prediction. TLJD integrates row data and column data in our built tabular dataset for judicial performance indicator encoding, and utilizes a mixture of experts model to adjust the weights of different indicators considering regional variations. To validate the effectiveness of TLJD, we design cross-city and cross-time tasks for city-level FDI predictions. Extensive experiments on both tasks demonstrate the superiority of TLJD (reach to at least 0.92 R2) over the other ten state-of-the-art baselines in different evaluation metrics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.05651
- https://arxiv.org/pdf/2507.05651
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416060942
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416060942Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.05651Digital Object Identifier
- Title
-
City-Level Foreign Direct Investment Prediction with Tabular Learning on Judicial DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-08Full publication date if available
- Authors
-
Tianxing Wu, Lei Cao, Shuang Wang, Wang Ji-ming, Shutong Zhu, Wu Yan, Yuqing FengList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.05651Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.05651Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.05651Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416060942 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.05651 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.05651 |
| ids.openalex | https://openalex.org/W4416060942 |
| fwci | |
| type | preprint |
| title | City-Level Foreign Direct Investment Prediction with Tabular Learning on Judicial Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.05651 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.05651 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.05651 |
| locations[1].id | doi:10.48550/arxiv.2507.05651 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.05651 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5059512471 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4669-3570 |
| authorships[0].author.display_name | Tianxing Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Tianxing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049926126 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9909-8607 |
| authorships[1].author.display_name | Lei Cao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cao, Lizhe |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100375557 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6420-983X |
| authorships[2].author.display_name | Shuang Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Shuang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101972247 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Wang Ji-ming |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Jiming |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5082079401 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-3350-2457 |
| authorships[4].author.display_name | Shutong Zhu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhu, Shutong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5102776143 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2254-635X |
| authorships[5].author.display_name | Wu Yan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wu, Yerong |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5102293753 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8868-6083 |
| authorships[6].author.display_name | Yuqing Feng |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Feng, Yuqing |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.05651 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | City-Level Foreign Direct Investment Prediction with Tabular Learning on Judicial Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:25:56.517362 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.05651 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.05651 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.05651 |
| primary_location.id | pmh:oai:arXiv.org:2507.05651 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.05651 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.05651 |
| publication_date | 2025-07-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 21, 114, 122, 154 |
| abstract_inverted_index.To | 0, 64, 169 |
| abstract_inverted_index.We | 119 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.at | 197 |
| abstract_inverted_index.be | 56 |
| abstract_inverted_index.in | 24, 142, 207 |
| abstract_inverted_index.is | 35, 42, 117 |
| abstract_inverted_index.of | 101, 156, 163, 173, 193 |
| abstract_inverted_index.on | 8, 46, 90, 127, 187 |
| abstract_inverted_index.to | 58, 70, 112, 159, 196 |
| abstract_inverted_index.we | 68, 92, 175 |
| abstract_inverted_index.FDI | 33, 87, 133, 183 |
| abstract_inverted_index.R2) | 200 |
| abstract_inverted_index.and | 12, 28, 41, 83, 139, 152, 178 |
| abstract_inverted_index.for | 38, 85, 98, 131, 147, 181 |
| abstract_inverted_index.new | 123 |
| abstract_inverted_index.our | 143 |
| abstract_inverted_index.row | 137 |
| abstract_inverted_index.ten | 204 |
| abstract_inverted_index.the | 2, 99, 161, 171, 191, 202 |
| abstract_inverted_index.try | 69 |
| abstract_inverted_index.0.92 | 199 |
| abstract_inverted_index.Data | 129 |
| abstract_inverted_index.Goal | 7 |
| abstract_inverted_index.TLJD | 135, 194 |
| abstract_inverted_index.both | 188 |
| abstract_inverted_index.data | 48, 54, 74, 138, 141 |
| abstract_inverted_index.less | 62 |
| abstract_inverted_index.over | 104, 201 |
| abstract_inverted_index.role | 23 |
| abstract_inverted_index.such | 52 |
| abstract_inverted_index.then | 120 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.(FDI) | 19 |
| abstract_inverted_index.Based | 89 |
| abstract_inverted_index.GDP). | 50 |
| abstract_inverted_index.TLJD, | 174 |
| abstract_inverted_index.based | 45 |
| abstract_inverted_index.build | 94 |
| abstract_inverted_index.built | 144 |
| abstract_inverted_index.could | 55 |
| abstract_inverted_index.first | 93 |
| abstract_inverted_index.index | 96 |
| abstract_inverted_index.least | 198 |
| abstract_inverted_index.local | 39, 80 |
| abstract_inverted_index.model | 158 |
| abstract_inverted_index.other | 203 |
| abstract_inverted_index.plays | 20 |
| abstract_inverted_index.prone | 57 |
| abstract_inverted_index.quite | 36 |
| abstract_inverted_index.tasks | 180, 189 |
| abstract_inverted_index.this, | 91 |
| abstract_inverted_index.which | 75, 113 |
| abstract_inverted_index.(TLJD) | 130 |
| abstract_inverted_index.(e.g., | 49 |
| abstract_inverted_index.(reach | 195 |
| abstract_inverted_index.United | 3 |
| abstract_inverted_index.adjust | 160 |
| abstract_inverted_index.column | 140 |
| abstract_inverted_index.design | 176 |
| abstract_inverted_index.direct | 17 |
| abstract_inverted_index.issue, | 67 |
| abstract_inverted_index.making | 60 |
| abstract_inverted_index.method | 126 |
| abstract_inverted_index.system | 97 |
| abstract_inverted_index.twelve | 105 |
| abstract_inverted_index.Nations | 4 |
| abstract_inverted_index.Precise | 31 |
| abstract_inverted_index.Tabular | 124 |
| abstract_inverted_index.address | 65 |
| abstract_inverted_index.advance | 1 |
| abstract_inverted_index.crucial | 22 |
| abstract_inverted_index.dataset | 116, 146 |
| abstract_inverted_index.experts | 157 |
| abstract_inverted_index.foreign | 16 |
| abstract_inverted_index.growth, | 15 |
| abstract_inverted_index.million | 106 |
| abstract_inverted_index.mixture | 155 |
| abstract_inverted_index.propose | 121 |
| abstract_inverted_index.studied | 44 |
| abstract_inverted_index.tabular | 115, 145 |
| abstract_inverted_index.weights | 162 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.Judicial | 128 |
| abstract_inverted_index.Learning | 125 |
| abstract_inverted_index.commonly | 43 |
| abstract_inverted_index.economic | 14, 26, 47, 53 |
| abstract_inverted_index.judicial | 73, 77, 102, 148 |
| abstract_inverted_index.leverage | 71 |
| abstract_inverted_index.metrics. | 210 |
| abstract_inverted_index.publicly | 107 |
| abstract_inverted_index.reflects | 76 |
| abstract_inverted_index.regional | 167 |
| abstract_inverted_index.returns, | 84 |
| abstract_inverted_index.security | 82 |
| abstract_inverted_index.utilizes | 153 |
| abstract_inverted_index.validate | 170 |
| abstract_inverted_index.Extensive | 185 |
| abstract_inverted_index.according | 111 |
| abstract_inverted_index.available | 108 |
| abstract_inverted_index.baselines | 206 |
| abstract_inverted_index.different | 164, 208 |
| abstract_inverted_index.documents | 110 |
| abstract_inverted_index.encoding, | 151 |
| abstract_inverted_index.expansion | 27 |
| abstract_inverted_index.fostering | 29 |
| abstract_inverted_index.important | 37 |
| abstract_inverted_index.indicator | 150 |
| abstract_inverted_index.promoting | 9 |
| abstract_inverted_index.reliable. | 63 |
| abstract_inverted_index.catalyzing | 25 |
| abstract_inverted_index.city-level | 32, 86, 132, 182 |
| abstract_inverted_index.cross-city | 177 |
| abstract_inverted_index.cross-time | 179 |
| abstract_inverted_index.evaluation | 100, 209 |
| abstract_inverted_index.government | 40 |
| abstract_inverted_index.inclusive, | 11 |
| abstract_inverted_index.indicators | 165 |
| abstract_inverted_index.integrates | 136 |
| abstract_inverted_index.investment | 18, 81 |
| abstract_inverted_index.prediction | 34 |
| abstract_inverted_index.sustained, | 10 |
| abstract_inverted_index.Development | 6 |
| abstract_inverted_index.Sustainable | 5 |
| abstract_inverted_index.considering | 166 |
| abstract_inverted_index.demonstrate | 190 |
| abstract_inverted_index.experiments | 186 |
| abstract_inverted_index.influencing | 79 |
| abstract_inverted_index.innovation. | 30 |
| abstract_inverted_index.large-scale | 72 |
| abstract_inverted_index.performance | 78, 103, 149 |
| abstract_inverted_index.prediction. | 88, 134 |
| abstract_inverted_index.predictions | 61 |
| abstract_inverted_index.superiority | 192 |
| abstract_inverted_index.sustainable | 13 |
| abstract_inverted_index.variations. | 168 |
| abstract_inverted_index.adjudication | 109 |
| abstract_inverted_index.predictions. | 184 |
| abstract_inverted_index.effectiveness | 172 |
| abstract_inverted_index.manipulation, | 59 |
| abstract_inverted_index.reformulated. | 118 |
| abstract_inverted_index.state-of-the-art | 205 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |