CITY-SCALE TAXI DEMAND PREDICTION USING MULTISOURCE URBAN GEOSPATIAL DATA Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020
Real-time, accurate taxi demand prediction plays an important role in intelligent traffic system. It can help manage taxi patching and minimize the time and energy waste caused by waiting. In the era of big data, a diversity of urban data and increasingly complex traffic data have been collected and published. Traditional forecasting methods have been unable to cope with the heterogeneous massive traffic data, whereas deep learning, as a new data-oriented technique, has been widely used in the field of traffic prediction. This paper aims to utilize multisource data and deep learning techniques to improve the accuracy of taxi demand prediction. In this paper, a joint guidance residual network JG-Net is proposed for city-scale taxi demand prediction. Taxi order data and multiple urban geospatial data POI, road network and population distribution data) are integrated into the JG-Net. Regional features are considered in the prediction process by three guidance branches composed of pixel-adaptive convolutional networks, each of which applies one type of urban data. JG-Net assigns learnable weights to different branches and regions to combine the output of the branches, then further aggregates weather and time information to forecast the taxi demand. Extensive experiments and analyses are conducted, which show our method outperforms traditional methods. The mean square error of the prediction result on the testing set is 1.868, which is 12.3% lower than related models. The positive influence of combining multiple geospatial data is also validated by ablation experiments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020
- OA Status
- diamond
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3081320622
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3081320622Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020Digital Object Identifier
- Title
-
CITY-SCALE TAXI DEMAND PREDICTION USING MULTISOURCE URBAN GEOSPATIAL DATAWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-24Full publication date if available
- Authors
-
Jining Yan, Xiang Liu, Chenhao Wu, Huayi WuList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020Direct OA link when available
- Concepts
-
Geospatial analysis, Computer science, Demand forecasting, Data mining, Big data, Data set, Population, Residual, Scale (ratio), Field (mathematics), Artificial intelligence, Geography, Operations research, Engineering, Cartography, Sociology, Mathematics, Pure mathematics, Algorithm, DemographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3081320622 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| ids.mag | 3081320622 |
| ids.openalex | https://openalex.org/W3081320622 |
| fwci | 0.27652893 |
| type | article |
| title | CITY-SCALE TAXI DEMAND PREDICTION USING MULTISOURCE URBAN GEOSPATIAL DATA |
| biblio.issue | |
| biblio.volume | XLIII-B4-2020 |
| biblio.last_page | 220 |
| biblio.first_page | 213 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T11942 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Transportation and Mobility Innovations |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C9770341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7668739557266235 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[0].display_name | Geospatial analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6653751134872437 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C193809577 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5328878164291382 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3409300 |
| concepts[2].display_name | Demand forecasting |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5314623117446899 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C75684735 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45740464329719543 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[4].display_name | Big data |
| concepts[5].id | https://openalex.org/C58489278 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4518541395664215 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[5].display_name | Data set |
| concepts[6].id | https://openalex.org/C2908647359 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43718820810317993 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[6].display_name | Population |
| concepts[7].id | https://openalex.org/C155512373 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4368317723274231 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[7].display_name | Residual |
| concepts[8].id | https://openalex.org/C2778755073 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4262469708919525 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[8].display_name | Scale (ratio) |
| concepts[9].id | https://openalex.org/C9652623 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4184706211090088 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[9].display_name | Field (mathematics) |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.24807298183441162 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2177649438381195 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C42475967 |
| concepts[12].level | 1 |
| concepts[12].score | 0.19454333186149597 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[12].display_name | Operations research |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14903149008750916 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C58640448 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1271103024482727 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[14].display_name | Cartography |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C202444582 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[17].display_name | Pure mathematics |
| concepts[18].id | https://openalex.org/C11413529 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[18].display_name | Algorithm |
| concepts[19].id | https://openalex.org/C149923435 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[19].display_name | Demography |
| keywords[0].id | https://openalex.org/keywords/geospatial-analysis |
| keywords[0].score | 0.7668739557266235 |
| keywords[0].display_name | Geospatial analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6653751134872437 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/demand-forecasting |
| keywords[2].score | 0.5328878164291382 |
| keywords[2].display_name | Demand forecasting |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5314623117446899 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/big-data |
| keywords[4].score | 0.45740464329719543 |
| keywords[4].display_name | Big data |
| keywords[5].id | https://openalex.org/keywords/data-set |
| keywords[5].score | 0.4518541395664215 |
| keywords[5].display_name | Data set |
| keywords[6].id | https://openalex.org/keywords/population |
| keywords[6].score | 0.43718820810317993 |
| keywords[6].display_name | Population |
| keywords[7].id | https://openalex.org/keywords/residual |
| keywords[7].score | 0.4368317723274231 |
| keywords[7].display_name | Residual |
| keywords[8].id | https://openalex.org/keywords/scale |
| keywords[8].score | 0.4262469708919525 |
| keywords[8].display_name | Scale (ratio) |
| keywords[9].id | https://openalex.org/keywords/field |
| keywords[9].score | 0.4184706211090088 |
| keywords[9].display_name | Field (mathematics) |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.24807298183441162 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.2177649438381195 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/operations-research |
| keywords[12].score | 0.19454333186149597 |
| keywords[12].display_name | Operations research |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.14903149008750916 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/cartography |
| keywords[14].score | 0.1271103024482727 |
| keywords[14].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| locations[1].id | pmh:oai:doaj.org/article:957347188cb5400d9d4ab1397711a754 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B4-2020, Pp 213-220 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/957347188cb5400d9d4ab1397711a754 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5047516173 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0680-5427 |
| authorships[0].author.display_name | Jining Yan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[0].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[0].institutions[1].id | https://openalex.org/I37461747 |
| authorships[0].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Wuhan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J. Yan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[1].author.id | https://openalex.org/A5100728977 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1250-2211 |
| authorships[1].author.display_name | Xiang Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[1].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[1].institutions[1].id | https://openalex.org/I37461747 |
| authorships[1].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Wuhan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | L. Xiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[2].author.id | https://openalex.org/A5100756401 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8538-7966 |
| authorships[2].author.display_name | Chenhao Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[2].institutions[1].id | https://openalex.org/I37461747 |
| authorships[2].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Wuhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | C. Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[3].author.id | https://openalex.org/A5030670883 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3971-0512 |
| authorships[3].author.display_name | Huayi Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[3].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[3].institutions[1].id | https://openalex.org/I37461747 |
| authorships[3].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Wuhan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | H. Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CITY-SCALE TAXI DEMAND PREDICTION USING MULTISOURCE URBAN GEOSPATIAL DATA |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W4367313141, https://openalex.org/W2004086023, https://openalex.org/W2733999579, https://openalex.org/W2110217573, https://openalex.org/W4283374591, https://openalex.org/W2910751785, https://openalex.org/W4366547507, https://openalex.org/W4390608645, https://openalex.org/W4387891126, https://openalex.org/W4390100400 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| primary_location.id | doi:10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b4-2020-213-2020 |
| publication_date | 2020-08-24 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 69, 105 |
| abstract_inverted_index.In | 30, 102 |
| abstract_inverted_index.It | 14 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.as | 68 |
| abstract_inverted_index.by | 28, 146, 237 |
| abstract_inverted_index.in | 10, 77, 142 |
| abstract_inverted_index.is | 111, 217, 220, 234 |
| abstract_inverted_index.of | 33, 38, 80, 98, 151, 156, 161, 177, 209, 229 |
| abstract_inverted_index.on | 213 |
| abstract_inverted_index.to | 57, 86, 94, 168, 173, 187 |
| abstract_inverted_index.The | 205, 226 |
| abstract_inverted_index.and | 20, 24, 41, 49, 90, 121, 129, 171, 184, 194 |
| abstract_inverted_index.are | 133, 140, 196 |
| abstract_inverted_index.big | 34 |
| abstract_inverted_index.can | 15 |
| abstract_inverted_index.era | 32 |
| abstract_inverted_index.for | 113 |
| abstract_inverted_index.has | 73 |
| abstract_inverted_index.new | 70 |
| abstract_inverted_index.one | 159 |
| abstract_inverted_index.our | 200 |
| abstract_inverted_index.set | 216 |
| abstract_inverted_index.the | 22, 31, 60, 78, 96, 136, 143, 175, 178, 189, 210, 214 |
| abstract_inverted_index.POI, | 126 |
| abstract_inverted_index.Taxi | 118 |
| abstract_inverted_index.This | 83 |
| abstract_inverted_index.aims | 85 |
| abstract_inverted_index.also | 235 |
| abstract_inverted_index.been | 47, 55, 74 |
| abstract_inverted_index.cope | 58 |
| abstract_inverted_index.data | 40, 45, 89, 120, 125, 233 |
| abstract_inverted_index.deep | 66, 91 |
| abstract_inverted_index.each | 155 |
| abstract_inverted_index.have | 46, 54 |
| abstract_inverted_index.help | 16 |
| abstract_inverted_index.into | 135 |
| abstract_inverted_index.mean | 206 |
| abstract_inverted_index.road | 127 |
| abstract_inverted_index.role | 9 |
| abstract_inverted_index.show | 199 |
| abstract_inverted_index.taxi | 3, 18, 99, 115, 190 |
| abstract_inverted_index.than | 223 |
| abstract_inverted_index.then | 180 |
| abstract_inverted_index.this | 103 |
| abstract_inverted_index.time | 23, 185 |
| abstract_inverted_index.type | 160 |
| abstract_inverted_index.used | 76 |
| abstract_inverted_index.with | 59 |
| abstract_inverted_index.12.3% | 221 |
| abstract_inverted_index.data) | 132 |
| abstract_inverted_index.data, | 35, 64 |
| abstract_inverted_index.data. | 163 |
| abstract_inverted_index.error | 208 |
| abstract_inverted_index.field | 79 |
| abstract_inverted_index.joint | 106 |
| abstract_inverted_index.lower | 222 |
| abstract_inverted_index.order | 119 |
| abstract_inverted_index.paper | 84 |
| abstract_inverted_index.plays | 6 |
| abstract_inverted_index.three | 147 |
| abstract_inverted_index.urban | 39, 123, 162 |
| abstract_inverted_index.waste | 26 |
| abstract_inverted_index.which | 157, 198, 219 |
| abstract_inverted_index.1.868, | 218 |
| abstract_inverted_index.JG-Net | 110, 164 |
| abstract_inverted_index.caused | 27 |
| abstract_inverted_index.demand | 4, 100, 116 |
| abstract_inverted_index.energy | 25 |
| abstract_inverted_index.manage | 17 |
| abstract_inverted_index.method | 201 |
| abstract_inverted_index.output | 176 |
| abstract_inverted_index.paper, | 104 |
| abstract_inverted_index.result | 212 |
| abstract_inverted_index.square | 207 |
| abstract_inverted_index.unable | 56 |
| abstract_inverted_index.widely | 75 |
| abstract_inverted_index.JG-Net. | 137 |
| abstract_inverted_index.applies | 158 |
| abstract_inverted_index.assigns | 165 |
| abstract_inverted_index.combine | 174 |
| abstract_inverted_index.complex | 43 |
| abstract_inverted_index.demand. | 191 |
| abstract_inverted_index.further | 181 |
| abstract_inverted_index.improve | 95 |
| abstract_inverted_index.massive | 62 |
| abstract_inverted_index.methods | 53 |
| abstract_inverted_index.models. | 225 |
| abstract_inverted_index.network | 109, 128 |
| abstract_inverted_index.process | 145 |
| abstract_inverted_index.regions | 172 |
| abstract_inverted_index.related | 224 |
| abstract_inverted_index.system. | 13 |
| abstract_inverted_index.testing | 215 |
| abstract_inverted_index.traffic | 12, 44, 63, 81 |
| abstract_inverted_index.utilize | 87 |
| abstract_inverted_index.weather | 183 |
| abstract_inverted_index.weights | 167 |
| abstract_inverted_index.whereas | 65 |
| abstract_inverted_index.Regional | 138 |
| abstract_inverted_index.ablation | 238 |
| abstract_inverted_index.accuracy | 97 |
| abstract_inverted_index.accurate | 2 |
| abstract_inverted_index.analyses | 195 |
| abstract_inverted_index.branches | 149, 170 |
| abstract_inverted_index.composed | 150 |
| abstract_inverted_index.features | 139 |
| abstract_inverted_index.forecast | 188 |
| abstract_inverted_index.guidance | 107, 148 |
| abstract_inverted_index.learning | 92 |
| abstract_inverted_index.methods. | 204 |
| abstract_inverted_index.minimize | 21 |
| abstract_inverted_index.multiple | 122, 231 |
| abstract_inverted_index.patching | 19 |
| abstract_inverted_index.positive | 227 |
| abstract_inverted_index.proposed | 112 |
| abstract_inverted_index.residual | 108 |
| abstract_inverted_index.waiting. | 29 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Extensive | 192 |
| abstract_inverted_index.branches, | 179 |
| abstract_inverted_index.collected | 48 |
| abstract_inverted_index.combining | 230 |
| abstract_inverted_index.different | 169 |
| abstract_inverted_index.diversity | 37 |
| abstract_inverted_index.important | 8 |
| abstract_inverted_index.influence | 228 |
| abstract_inverted_index.learnable | 166 |
| abstract_inverted_index.learning, | 67 |
| abstract_inverted_index.networks, | 154 |
| abstract_inverted_index.validated | 236 |
| abstract_inverted_index.Real-time, | 1 |
| abstract_inverted_index.aggregates | 182 |
| abstract_inverted_index.city-scale | 114 |
| abstract_inverted_index.conducted, | 197 |
| abstract_inverted_index.considered | 141 |
| abstract_inverted_index.geospatial | 124, 232 |
| abstract_inverted_index.integrated | 134 |
| abstract_inverted_index.population | 130 |
| abstract_inverted_index.prediction | 5, 144, 211 |
| abstract_inverted_index.published. | 50 |
| abstract_inverted_index.technique, | 72 |
| abstract_inverted_index.techniques | 93 |
| abstract_inverted_index.Traditional | 51 |
| abstract_inverted_index.experiments | 193 |
| abstract_inverted_index.forecasting | 52 |
| abstract_inverted_index.information | 186 |
| abstract_inverted_index.intelligent | 11 |
| abstract_inverted_index.multisource | 88 |
| abstract_inverted_index.outperforms | 202 |
| abstract_inverted_index.prediction. | 82, 101, 117 |
| abstract_inverted_index.traditional | 203 |
| abstract_inverted_index.distribution | 131 |
| abstract_inverted_index.experiments. | 239 |
| abstract_inverted_index.increasingly | 42 |
| abstract_inverted_index.convolutional | 153 |
| abstract_inverted_index.data-oriented | 71 |
| abstract_inverted_index.heterogeneous | 61 |
| abstract_inverted_index.pixel-adaptive | 152 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.57192596 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |