CLAD-Net: Continual Activity Recognition in Multi-Sensor Wearable Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.23077
The rise of deep learning has greatly advanced human behavior monitoring using wearable sensors, particularly human activity recognition (HAR). While deep models have been widely studied, most assume stationary data distributions - an assumption often violated in real-world scenarios. For example, sensor data from one subject may differ significantly from another, leading to distribution shifts. In continual learning, this shift is framed as a sequence of tasks, each corresponding to a new subject. Such settings suffer from catastrophic forgetting, where prior knowledge deteriorates as new tasks are learned. This challenge is compounded by the scarcity and inconsistency of labeled data in human studies. To address these issues, we propose CLAD-Net (Continual Learning with Attention and Distillation), a framework enabling wearable-sensor models to be updated continuously without sacrificing performance on past tasks. CLAD-Net integrates a self-supervised transformer, acting as long-term memory, with a supervised Convolutional Neural Network (CNN) trained via knowledge distillation for activity classification. The transformer captures global activity patterns through cross-attention across body-mounted sensors, learning generalizable representations without labels. Meanwhile, the CNN leverages knowledge distillation to retain prior knowledge during subject-wise fine-tuning. On PAMAP2, CLAD-Net achieves 91.36 percent final accuracy with only 8.78 percent forgetting, surpassing memory-based and regularization-based baselines such as Experience Replay and Elastic Weight Consolidation. In semi-supervised settings with only 10-20 percent labeled data, CLAD-Net still delivers strong performance, demonstrating robustness to label scarcity. Ablation studies further validate each module's contribution.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.23077
- https://arxiv.org/pdf/2509.23077
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415332020
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415332020Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.23077Digital Object Identifier
- Title
-
CLAD-Net: Continual Activity Recognition in Multi-Sensor Wearable SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-27Full publication date if available
- Authors
-
Reza Rahimi Azghan, Gautham Krishna Gudur, Mohit Malu, Edison Thomaz, Giulia Pedrielli, Pavan Turaga, Hassan GhasemzadehList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.23077Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.23077Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.23077Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415332020 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.23077 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.23077 |
| ids.openalex | https://openalex.org/W4415332020 |
| fwci | |
| type | preprint |
| title | CLAD-Net: Continual Activity Recognition in Multi-Sensor Wearable Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10444 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9810000061988831 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Context-Aware Activity Recognition Systems |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9207000136375427 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.23077 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.23077 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.23077 |
| locations[1].id | doi:10.48550/arxiv.2509.23077 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.23077 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5093400175 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Reza Rahimi Azghan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Azghan, Reza Rahimi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064061928 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Gautham Krishna Gudur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gudur, Gautham Krishna |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030783833 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2046-2504 |
| authorships[2].author.display_name | Mohit Malu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Malu, Mohit |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025977484 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8188-0457 |
| authorships[3].author.display_name | Edison Thomaz |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Thomaz, Edison |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5049158387 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6726-9790 |
| authorships[4].author.display_name | Giulia Pedrielli |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pedrielli, Giulia |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5062945520 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5263-5943 |
| authorships[5].author.display_name | Pavan Turaga |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Turaga, Pavan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5007139473 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1844-1416 |
| authorships[6].author.display_name | Hassan Ghasemzadeh |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ghasemzadeh, Hassan |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.23077 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | CLAD-Net: Continual Activity Recognition in Multi-Sensor Wearable Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10444 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9810000061988831 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Context-Aware Activity Recognition Systems |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.23077 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.23077 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.23077 |
| primary_location.id | pmh:oai:arXiv.org:2509.23077 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.23077 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.23077 |
| publication_date | 2025-09-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 31 |
| abstract_inverted_index.a | 63, 70, 116, 133, 141 |
| abstract_inverted_index.In | 55, 209 |
| abstract_inverted_index.On | 183 |
| abstract_inverted_index.To | 103 |
| abstract_inverted_index.an | 32 |
| abstract_inverted_index.as | 62, 83, 137, 202 |
| abstract_inverted_index.be | 122 |
| abstract_inverted_index.by | 92 |
| abstract_inverted_index.in | 36, 100 |
| abstract_inverted_index.is | 60, 90 |
| abstract_inverted_index.of | 2, 65, 97 |
| abstract_inverted_index.on | 128 |
| abstract_inverted_index.to | 52, 69, 121, 176, 225 |
| abstract_inverted_index.we | 107 |
| abstract_inverted_index.CNN | 172 |
| abstract_inverted_index.For | 39 |
| abstract_inverted_index.The | 0, 154 |
| abstract_inverted_index.and | 95, 114, 198, 205 |
| abstract_inverted_index.are | 86 |
| abstract_inverted_index.for | 151 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.may | 46 |
| abstract_inverted_index.new | 71, 84 |
| abstract_inverted_index.one | 44 |
| abstract_inverted_index.the | 93, 171 |
| abstract_inverted_index.via | 148 |
| abstract_inverted_index.8.78 | 193 |
| abstract_inverted_index.Such | 73 |
| abstract_inverted_index.This | 88 |
| abstract_inverted_index.been | 23 |
| abstract_inverted_index.data | 29, 42, 99 |
| abstract_inverted_index.deep | 3, 20 |
| abstract_inverted_index.each | 67, 232 |
| abstract_inverted_index.from | 43, 49, 76 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.most | 26 |
| abstract_inverted_index.only | 192, 213 |
| abstract_inverted_index.past | 129 |
| abstract_inverted_index.rise | 1 |
| abstract_inverted_index.such | 201 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.with | 112, 140, 191, 212 |
| abstract_inverted_index.(CNN) | 146 |
| abstract_inverted_index.10-20 | 214 |
| abstract_inverted_index.91.36 | 187 |
| abstract_inverted_index.While | 19 |
| abstract_inverted_index.data, | 217 |
| abstract_inverted_index.final | 189 |
| abstract_inverted_index.human | 8, 15, 101 |
| abstract_inverted_index.label | 226 |
| abstract_inverted_index.often | 34 |
| abstract_inverted_index.prior | 80, 178 |
| abstract_inverted_index.shift | 59 |
| abstract_inverted_index.still | 219 |
| abstract_inverted_index.tasks | 85 |
| abstract_inverted_index.these | 105 |
| abstract_inverted_index.using | 11 |
| abstract_inverted_index.where | 79 |
| abstract_inverted_index.(HAR). | 18 |
| abstract_inverted_index.Neural | 144 |
| abstract_inverted_index.Replay | 204 |
| abstract_inverted_index.Weight | 207 |
| abstract_inverted_index.across | 162 |
| abstract_inverted_index.acting | 136 |
| abstract_inverted_index.assume | 27 |
| abstract_inverted_index.differ | 47 |
| abstract_inverted_index.during | 180 |
| abstract_inverted_index.framed | 61 |
| abstract_inverted_index.global | 157 |
| abstract_inverted_index.models | 21, 120 |
| abstract_inverted_index.retain | 177 |
| abstract_inverted_index.sensor | 41 |
| abstract_inverted_index.strong | 221 |
| abstract_inverted_index.suffer | 75 |
| abstract_inverted_index.tasks, | 66 |
| abstract_inverted_index.tasks. | 130 |
| abstract_inverted_index.widely | 24 |
| abstract_inverted_index.Elastic | 206 |
| abstract_inverted_index.Network | 145 |
| abstract_inverted_index.PAMAP2, | 184 |
| abstract_inverted_index.address | 104 |
| abstract_inverted_index.further | 230 |
| abstract_inverted_index.greatly | 6 |
| abstract_inverted_index.issues, | 106 |
| abstract_inverted_index.labeled | 98, 216 |
| abstract_inverted_index.labels. | 169 |
| abstract_inverted_index.leading | 51 |
| abstract_inverted_index.memory, | 139 |
| abstract_inverted_index.percent | 188, 194, 215 |
| abstract_inverted_index.propose | 108 |
| abstract_inverted_index.shifts. | 54 |
| abstract_inverted_index.studies | 229 |
| abstract_inverted_index.subject | 45 |
| abstract_inverted_index.through | 160 |
| abstract_inverted_index.trained | 147 |
| abstract_inverted_index.updated | 123 |
| abstract_inverted_index.without | 125, 168 |
| abstract_inverted_index.Ablation | 228 |
| abstract_inverted_index.CLAD-Net | 109, 131, 185, 218 |
| abstract_inverted_index.Learning | 111 |
| abstract_inverted_index.accuracy | 190 |
| abstract_inverted_index.achieves | 186 |
| abstract_inverted_index.activity | 16, 152, 158 |
| abstract_inverted_index.advanced | 7 |
| abstract_inverted_index.another, | 50 |
| abstract_inverted_index.behavior | 9 |
| abstract_inverted_index.captures | 156 |
| abstract_inverted_index.delivers | 220 |
| abstract_inverted_index.enabling | 118 |
| abstract_inverted_index.example, | 40 |
| abstract_inverted_index.learned. | 87 |
| abstract_inverted_index.learning | 4, 165 |
| abstract_inverted_index.module's | 233 |
| abstract_inverted_index.patterns | 159 |
| abstract_inverted_index.scarcity | 94 |
| abstract_inverted_index.sensors, | 13, 164 |
| abstract_inverted_index.sequence | 64 |
| abstract_inverted_index.settings | 74, 211 |
| abstract_inverted_index.studied, | 25 |
| abstract_inverted_index.studies. | 102 |
| abstract_inverted_index.subject. | 72 |
| abstract_inverted_index.validate | 231 |
| abstract_inverted_index.violated | 35 |
| abstract_inverted_index.wearable | 12 |
| abstract_inverted_index.Attention | 113 |
| abstract_inverted_index.baselines | 200 |
| abstract_inverted_index.challenge | 89 |
| abstract_inverted_index.continual | 56 |
| abstract_inverted_index.framework | 117 |
| abstract_inverted_index.knowledge | 81, 149, 174, 179 |
| abstract_inverted_index.learning, | 57 |
| abstract_inverted_index.leverages | 173 |
| abstract_inverted_index.long-term | 138 |
| abstract_inverted_index.scarcity. | 227 |
| abstract_inverted_index.(Continual | 110 |
| abstract_inverted_index.Experience | 203 |
| abstract_inverted_index.Meanwhile, | 170 |
| abstract_inverted_index.assumption | 33 |
| abstract_inverted_index.compounded | 91 |
| abstract_inverted_index.integrates | 132 |
| abstract_inverted_index.monitoring | 10 |
| abstract_inverted_index.real-world | 37 |
| abstract_inverted_index.robustness | 224 |
| abstract_inverted_index.scenarios. | 38 |
| abstract_inverted_index.stationary | 28 |
| abstract_inverted_index.supervised | 142 |
| abstract_inverted_index.surpassing | 196 |
| abstract_inverted_index.forgetting, | 78, 195 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.recognition | 17 |
| abstract_inverted_index.sacrificing | 126 |
| abstract_inverted_index.transformer | 155 |
| abstract_inverted_index.body-mounted | 163 |
| abstract_inverted_index.catastrophic | 77 |
| abstract_inverted_index.continuously | 124 |
| abstract_inverted_index.deteriorates | 82 |
| abstract_inverted_index.distillation | 150, 175 |
| abstract_inverted_index.distribution | 53 |
| abstract_inverted_index.fine-tuning. | 182 |
| abstract_inverted_index.memory-based | 197 |
| abstract_inverted_index.particularly | 14 |
| abstract_inverted_index.performance, | 222 |
| abstract_inverted_index.subject-wise | 181 |
| abstract_inverted_index.transformer, | 135 |
| abstract_inverted_index.Convolutional | 143 |
| abstract_inverted_index.contribution. | 234 |
| abstract_inverted_index.corresponding | 68 |
| abstract_inverted_index.demonstrating | 223 |
| abstract_inverted_index.distributions | 30 |
| abstract_inverted_index.generalizable | 166 |
| abstract_inverted_index.inconsistency | 96 |
| abstract_inverted_index.significantly | 48 |
| abstract_inverted_index.Consolidation. | 208 |
| abstract_inverted_index.Distillation), | 115 |
| abstract_inverted_index.classification. | 153 |
| abstract_inverted_index.cross-attention | 161 |
| abstract_inverted_index.representations | 167 |
| abstract_inverted_index.self-supervised | 134 |
| abstract_inverted_index.semi-supervised | 210 |
| abstract_inverted_index.wearable-sensor | 119 |
| abstract_inverted_index.regularization-based | 199 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |