Class-aware contrastive optimization for imbalanced text classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s44248-025-00064-0
The unique characteristics of text data make classification tasks a complex problem. Advances in unsupervised and semi-supervised learning and autoencoder architectures addressed several challenges. However, they still struggle with imbalanced text classification tasks, a common scenario in real-world applications, demonstrating a tendency to produce embeddings with unfavorable properties, such as class overlap. In this paper, we show that leveraging class-aware contrastive optimization combined with denoising autoencoders can successfully tackle imbalanced text classification tasks, achieving better performance than the other strong text classification models. Concretely, our proposal combines reconstruction loss with contrastive class separation in the embedding space, allowing a better balance between the truthfulness of the generated embeddings and the model’s ability to separate different classes. Compared with an extensive set of traditional and deep learning based competing methods, our proposal demonstrates a notable increase in performance across a wide variety of text datasets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s44248-025-00064-0
- https://link.springer.com/content/pdf/10.1007/s44248-025-00064-0.pdf
- OA Status
- diamond
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411878237
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411878237Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s44248-025-00064-0Digital Object Identifier
- Title
-
Class-aware contrastive optimization for imbalanced text classificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-01Full publication date if available
- Authors
-
Grigorii Khvatskii, Nuno Moniz, Khoa D. Doan, Nitesh V. ChawlaList of authors in order
- Landing page
-
https://doi.org/10.1007/s44248-025-00064-0Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s44248-025-00064-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s44248-025-00064-0.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Class (philosophy), Natural language processingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411878237 |
|---|---|
| doi | https://doi.org/10.1007/s44248-025-00064-0 |
| ids.doi | https://doi.org/10.1007/s44248-025-00064-0 |
| ids.openalex | https://openalex.org/W4411878237 |
| fwci | 0.0 |
| type | article |
| title | Class-aware contrastive optimization for imbalanced text classification |
| biblio.issue | 1 |
| biblio.volume | 3 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T11644 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Spam and Phishing Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.58111971616745 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.556442379951477 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2777212361 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5266754031181335 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[2].display_name | Class (philosophy) |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.45682811737060547 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.58111971616745 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.556442379951477 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/class |
| keywords[2].score | 0.5266754031181335 |
| keywords[2].display_name | Class (philosophy) |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.45682811737060547 |
| keywords[3].display_name | Natural language processing |
| language | en |
| locations[0].id | doi:10.1007/s44248-025-00064-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387287783 |
| locations[0].source.issn | 2731-6955 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2731-6955 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Discover Data |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s44248-025-00064-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Discover Data |
| locations[0].landing_page_url | https://doi.org/10.1007/s44248-025-00064-0 |
| locations[1].id | pmh:oai:doaj.org/article:7a11592f5f204d68ad281eab87257078 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Discover Data, Vol 3, Iss 1, Pp 1-22 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/7a11592f5f204d68ad281eab87257078 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5114633670 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Grigorii Khvatskii |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Grigorii Khvatskii |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5047689411 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4322-1076 |
| authorships[1].author.display_name | Nuno Moniz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nuno Moniz |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080642445 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1610-8206 |
| authorships[2].author.display_name | Khoa D. Doan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Khoa D. Doan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068157871 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3932-5956 |
| authorships[3].author.display_name | Nitesh V. Chawla |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Nitesh V. Chawla |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s44248-025-00064-0.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Class-aware contrastive optimization for imbalanced text classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s44248-025-00064-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387287783 |
| best_oa_location.source.issn | 2731-6955 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2731-6955 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Discover Data |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44248-025-00064-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Discover Data |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s44248-025-00064-0 |
| primary_location.id | doi:10.1007/s44248-025-00064-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387287783 |
| primary_location.source.issn | 2731-6955 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2731-6955 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Discover Data |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44248-025-00064-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Discover Data |
| primary_location.landing_page_url | https://doi.org/10.1007/s44248-025-00064-0 |
| publication_date | 2025-07-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2970641574, https://openalex.org/W4386566925, https://openalex.org/W4225426739, https://openalex.org/W3083510345, https://openalex.org/W2589114814, https://openalex.org/W4386811916, https://openalex.org/W4315491066, https://openalex.org/W4287185050, https://openalex.org/W4384934896, https://openalex.org/W2148143831, https://openalex.org/W2540642777, https://openalex.org/W4411091041, https://openalex.org/W2511234952, https://openalex.org/W2471991522, https://openalex.org/W3175345251, https://openalex.org/W3200253633, https://openalex.org/W4292212771, https://openalex.org/W4226428110, https://openalex.org/W2117190680, https://openalex.org/W2966679659, https://openalex.org/W2756182389, https://openalex.org/W2981515171, https://openalex.org/W3175414601, https://openalex.org/W3000722911, https://openalex.org/W2157364932, https://openalex.org/W2138621090, https://openalex.org/W3035324702, https://openalex.org/W4386212336, https://openalex.org/W4312421335, https://openalex.org/W4285678567, https://openalex.org/W4310733672, https://openalex.org/W3184776482, https://openalex.org/W3156636935, https://openalex.org/W4385570168, https://openalex.org/W4246183800, https://openalex.org/W1493526108, https://openalex.org/W2129250947, https://openalex.org/W2129104434, https://openalex.org/W3174223793, https://openalex.org/W3208862453, https://openalex.org/W2036166268, https://openalex.org/W4287887967, https://openalex.org/W4239510810, https://openalex.org/W4220717373, https://openalex.org/W3099702946 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 10, 34, 41, 99, 133, 139 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.an | 119 |
| abstract_inverted_index.as | 50 |
| abstract_inverted_index.in | 14, 37, 94, 136 |
| abstract_inverted_index.of | 4, 105, 122, 142 |
| abstract_inverted_index.to | 43, 113 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 16, 19, 109, 124 |
| abstract_inverted_index.can | 67 |
| abstract_inverted_index.our | 85, 130 |
| abstract_inverted_index.set | 121 |
| abstract_inverted_index.the | 78, 95, 103, 106, 110 |
| abstract_inverted_index.data | 6 |
| abstract_inverted_index.deep | 125 |
| abstract_inverted_index.loss | 89 |
| abstract_inverted_index.make | 7 |
| abstract_inverted_index.show | 57 |
| abstract_inverted_index.such | 49 |
| abstract_inverted_index.text | 5, 31, 71, 81, 143 |
| abstract_inverted_index.than | 77 |
| abstract_inverted_index.that | 58 |
| abstract_inverted_index.they | 26 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.wide | 140 |
| abstract_inverted_index.with | 29, 46, 64, 90, 118 |
| abstract_inverted_index.based | 127 |
| abstract_inverted_index.class | 51, 92 |
| abstract_inverted_index.other | 79 |
| abstract_inverted_index.still | 27 |
| abstract_inverted_index.tasks | 9 |
| abstract_inverted_index.across | 138 |
| abstract_inverted_index.better | 75, 100 |
| abstract_inverted_index.common | 35 |
| abstract_inverted_index.paper, | 55 |
| abstract_inverted_index.space, | 97 |
| abstract_inverted_index.strong | 80 |
| abstract_inverted_index.tackle | 69 |
| abstract_inverted_index.tasks, | 33, 73 |
| abstract_inverted_index.unique | 2 |
| abstract_inverted_index.ability | 112 |
| abstract_inverted_index.balance | 101 |
| abstract_inverted_index.between | 102 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.models. | 83 |
| abstract_inverted_index.notable | 134 |
| abstract_inverted_index.produce | 44 |
| abstract_inverted_index.several | 23 |
| abstract_inverted_index.variety | 141 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Advances | 13 |
| abstract_inverted_index.Compared | 117 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.allowing | 98 |
| abstract_inverted_index.classes. | 116 |
| abstract_inverted_index.combined | 63 |
| abstract_inverted_index.combines | 87 |
| abstract_inverted_index.increase | 135 |
| abstract_inverted_index.learning | 18, 126 |
| abstract_inverted_index.methods, | 129 |
| abstract_inverted_index.overlap. | 52 |
| abstract_inverted_index.problem. | 12 |
| abstract_inverted_index.proposal | 86, 131 |
| abstract_inverted_index.scenario | 36 |
| abstract_inverted_index.separate | 114 |
| abstract_inverted_index.struggle | 28 |
| abstract_inverted_index.tendency | 42 |
| abstract_inverted_index.achieving | 74 |
| abstract_inverted_index.addressed | 22 |
| abstract_inverted_index.competing | 128 |
| abstract_inverted_index.datasets. | 144 |
| abstract_inverted_index.denoising | 65 |
| abstract_inverted_index.different | 115 |
| abstract_inverted_index.embedding | 96 |
| abstract_inverted_index.extensive | 120 |
| abstract_inverted_index.generated | 107 |
| abstract_inverted_index.model’s | 111 |
| abstract_inverted_index.embeddings | 45, 108 |
| abstract_inverted_index.imbalanced | 30, 70 |
| abstract_inverted_index.leveraging | 59 |
| abstract_inverted_index.real-world | 38 |
| abstract_inverted_index.separation | 93 |
| abstract_inverted_index.Concretely, | 84 |
| abstract_inverted_index.autoencoder | 20 |
| abstract_inverted_index.challenges. | 24 |
| abstract_inverted_index.class-aware | 60 |
| abstract_inverted_index.contrastive | 61, 91 |
| abstract_inverted_index.performance | 76, 137 |
| abstract_inverted_index.properties, | 48 |
| abstract_inverted_index.traditional | 123 |
| abstract_inverted_index.unfavorable | 47 |
| abstract_inverted_index.autoencoders | 66 |
| abstract_inverted_index.demonstrates | 132 |
| abstract_inverted_index.optimization | 62 |
| abstract_inverted_index.successfully | 68 |
| abstract_inverted_index.truthfulness | 104 |
| abstract_inverted_index.unsupervised | 15 |
| abstract_inverted_index.applications, | 39 |
| abstract_inverted_index.architectures | 21 |
| abstract_inverted_index.demonstrating | 40 |
| abstract_inverted_index.classification | 8, 32, 72, 82 |
| abstract_inverted_index.reconstruction | 88 |
| abstract_inverted_index.characteristics | 3 |
| abstract_inverted_index.semi-supervised | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.11414956 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |