Classification and regression tree model for diabetes prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.11591/ijict.v15i1.pp207-216
Diabetes mellitus is characterized by excessive blood glucose that occurs when the pancreas malfunctions while producing insulin. High blood glucose levels can cause chronic damage to organs, particularly the eyes and kidneys. Diabetes prediction models traditionally use a variety of machine learning (ML) algorithms by combining data from the glucose levels, patient health parameters, and other biomarkers. Prior research on diabetes prediction using various algorithms, such as support vector machine (SVM) and decision tree (DT) models, demonstrates an accuracy rate of approximately 70%, which is relatively modest. Therefore, in this study, a classification and regression tree (CART) multiclassifier model has been proposed to improve the accuracy of diabetes prediction, which is based on three classes: non-diabetic, pre-diabetic, and diabetic. The study involved data preprocessing steps, hyperparameter tuning, and evaluation of performance metrics. The model achieved 97% accuracy while utilizing the value of 5 for the number of leaves per node, the value of 10 for the maximum number of splits, and deviance as the split criterion, which also resulted in a precision of 98%, recall of 97%, and F1-score of 98%, showing that the proposed multiclassifier model can accurately predict diabetes. In conclusion, the proposed CART model with the best hyperparameter setting can enable the highest accuracy in predicting diabetes classes.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.11591/ijict.v15i1.pp207-216
- https://ijict.iaescore.com/index.php/IJICT/article/download/21547/13255
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W7114893122
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7114893122Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijict.v15i1.pp207-216Digital Object Identifier
- Title
-
Classification and regression tree model for diabetes predictionWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-12Full publication date if available
- Authors
-
Farah Najidah Noorizan, Nur Anida Jumadi, Li Mun Ng, Farah Najidah Noorizan, Nur Anida Jumadi, Li Mun NgList of authors in order
- Landing page
-
https://doi.org/10.11591/ijict.v15i1.pp207-216Publisher landing page
- PDF URL
-
https://ijict.iaescore.com/index.php/IJICT/article/download/21547/13255Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijict.iaescore.com/index.php/IJICT/article/download/21547/13255Direct OA link when available
- Concepts
-
Hyperparameter, Decision tree, Artificial intelligence, Machine learning, Regression, Support vector machine, Diabetes mellitus, Computer science, Decision tree model, Regression analysis, Random forest, Statistics, Decision tree learning, Predictive modelling, Data pre-processing, Preprocessor, Tree (set theory), Cart, Precision and recall, Pattern recognition (psychology), Data mining, Mathematics, Linear regression, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7114893122 |
|---|---|
| doi | https://doi.org/10.11591/ijict.v15i1.pp207-216 |
| ids.doi | https://doi.org/10.11591/ijict.v15i1.pp207-216 |
| ids.openalex | https://openalex.org/W7114893122 |
| fwci | 0.0 |
| type | article |
| title | Classification and regression tree model for diabetes prediction |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 207 |
| biblio.first_page | 207 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.8562180399894714 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T11438 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.014816472306847572 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Retinal Imaging and Analysis |
| topics[2].id | https://openalex.org/T13434 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.004698059055954218 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2730 |
| topics[2].subfield.display_name | Oncology |
| topics[2].display_name | Cancer Research and Treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C8642999 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6763454675674438 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[0].display_name | Hyperparameter |
| concepts[1].id | https://openalex.org/C84525736 |
| concepts[1].level | 2 |
| concepts[1].score | 0.658656656742096 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[1].display_name | Decision tree |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5842477679252625 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5017799139022827 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C83546350 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4984772205352783 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[4].display_name | Regression |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4854765832424164 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C555293320 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4701050817966461 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[6].display_name | Diabetes mellitus |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4610644280910492 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C56289965 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4273354113101959 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5249246 |
| concepts[8].display_name | Decision tree model |
| concepts[9].id | https://openalex.org/C152877465 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4232752323150635 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[9].display_name | Regression analysis |
| concepts[10].id | https://openalex.org/C169258074 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42151206731796265 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[10].display_name | Random forest |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.421069473028183 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C5481197 |
| concepts[12].level | 3 |
| concepts[12].score | 0.38520124554634094 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q16766476 |
| concepts[12].display_name | Decision tree learning |
| concepts[13].id | https://openalex.org/C45804977 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3726271688938141 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[13].display_name | Predictive modelling |
| concepts[14].id | https://openalex.org/C10551718 |
| concepts[14].level | 2 |
| concepts[14].score | 0.37136945128440857 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5227332 |
| concepts[14].display_name | Data pre-processing |
| concepts[15].id | https://openalex.org/C34736171 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3689384460449219 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[15].display_name | Preprocessor |
| concepts[16].id | https://openalex.org/C113174947 |
| concepts[16].level | 2 |
| concepts[16].score | 0.33457112312316895 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[16].display_name | Tree (set theory) |
| concepts[17].id | https://openalex.org/C2777275308 |
| concepts[17].level | 2 |
| concepts[17].score | 0.32377639412879944 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q234668 |
| concepts[17].display_name | Cart |
| concepts[18].id | https://openalex.org/C81669768 |
| concepts[18].level | 2 |
| concepts[18].score | 0.31315287947654724 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2359161 |
| concepts[18].display_name | Precision and recall |
| concepts[19].id | https://openalex.org/C153180895 |
| concepts[19].level | 2 |
| concepts[19].score | 0.3095979392528534 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[19].display_name | Pattern recognition (psychology) |
| concepts[20].id | https://openalex.org/C124101348 |
| concepts[20].level | 1 |
| concepts[20].score | 0.2942464053630829 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[20].display_name | Data mining |
| concepts[21].id | https://openalex.org/C33923547 |
| concepts[21].level | 0 |
| concepts[21].score | 0.2921045124530792 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[21].display_name | Mathematics |
| concepts[22].id | https://openalex.org/C48921125 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2604024410247803 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[22].display_name | Linear regression |
| concepts[23].id | https://openalex.org/C71924100 |
| concepts[23].level | 0 |
| concepts[23].score | 0.25640106201171875 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[23].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/hyperparameter |
| keywords[0].score | 0.6763454675674438 |
| keywords[0].display_name | Hyperparameter |
| keywords[1].id | https://openalex.org/keywords/decision-tree |
| keywords[1].score | 0.658656656742096 |
| keywords[1].display_name | Decision tree |
| keywords[2].id | https://openalex.org/keywords/regression |
| keywords[2].score | 0.4984772205352783 |
| keywords[2].display_name | Regression |
| keywords[3].id | https://openalex.org/keywords/support-vector-machine |
| keywords[3].score | 0.4854765832424164 |
| keywords[3].display_name | Support vector machine |
| keywords[4].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[4].score | 0.4701050817966461 |
| keywords[4].display_name | Diabetes mellitus |
| keywords[5].id | https://openalex.org/keywords/decision-tree-model |
| keywords[5].score | 0.4273354113101959 |
| keywords[5].display_name | Decision tree model |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.4232752323150635 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/random-forest |
| keywords[7].score | 0.42151206731796265 |
| keywords[7].display_name | Random forest |
| language | |
| locations[0].id | doi:10.11591/ijict.v15i1.pp207-216 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764683969 |
| locations[0].source.issn | 2252-8776, 2722-2616 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2252-8776 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Informatics and Communication Technology (IJ-ICT) |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ijict.iaescore.com/index.php/IJICT/article/download/21547/13255 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Informatics and Communication Technology (IJ-ICT) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijict.v15i1.pp207-216 |
| indexed_in | crossref |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Farah Najidah Noorizan |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I930072361 |
| authorships[0].affiliations[0].raw_affiliation_string | Universiti Tun Hussein Onn Malaysia (UTHM) |
| authorships[0].institutions[0].id | https://openalex.org/I930072361 |
| authorships[0].institutions[0].ror | https://ror.org/01c5wha71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I930072361 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Tun Hussein Onn University of Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Farah Najidah Noorizan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Universiti Tun Hussein Onn Malaysia (UTHM) |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Nur Anida Jumadi |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I930072361 |
| authorships[1].affiliations[0].raw_affiliation_string | Universiti Tun Hussein Onn Malaysia (UTHM) |
| authorships[1].institutions[0].id | https://openalex.org/I930072361 |
| authorships[1].institutions[0].ror | https://ror.org/01c5wha71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I930072361 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Tun Hussein Onn University of Malaysia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nur Anida Jumadi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universiti Tun Hussein Onn Malaysia (UTHM) |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Li Mun Ng |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I930072361 |
| authorships[2].affiliations[0].raw_affiliation_string | Universiti Tun Hussein Onn Malaysia (UTHM) |
| authorships[2].institutions[0].id | https://openalex.org/I930072361 |
| authorships[2].institutions[0].ror | https://ror.org/01c5wha71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I930072361 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Tun Hussein Onn University of Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li Mun Ng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universiti Tun Hussein Onn Malaysia (UTHM) |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Farah Najidah Noorizan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Farah Najidah Noorizan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Nur Anida Jumadi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nur Anida Jumadi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Li Mun Ng |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li Mun Ng |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijict.iaescore.com/index.php/IJICT/article/download/21547/13255 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-12T00:00:00 |
| display_name | Classification and regression tree model for diabetes prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-13T23:11:00.310470 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.8562180399894714 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijict.v15i1.pp207-216 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764683969 |
| best_oa_location.source.issn | 2252-8776, 2722-2616 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2252-8776 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Informatics and Communication Technology (IJ-ICT) |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ijict.iaescore.com/index.php/IJICT/article/download/21547/13255 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Informatics and Communication Technology (IJ-ICT) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijict.v15i1.pp207-216 |
| primary_location.id | doi:10.11591/ijict.v15i1.pp207-216 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764683969 |
| primary_location.source.issn | 2252-8776, 2722-2616 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2252-8776 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Informatics and Communication Technology (IJ-ICT) |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ijict.iaescore.com/index.php/IJICT/article/download/21547/13255 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Informatics and Communication Technology (IJ-ICT) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijict.v15i1.pp207-216 |
| publication_date | 2025-12-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 142 |
| abstract_inverted_index.a | 37, 91, 170 |
| abstract_inverted_index.10 | 153 |
| abstract_inverted_index.In | 191 |
| abstract_inverted_index.an | 77 |
| abstract_inverted_index.as | 66, 162 |
| abstract_inverted_index.by | 4, 44 |
| abstract_inverted_index.in | 88, 169, 207 |
| abstract_inverted_index.is | 2, 84, 110 |
| abstract_inverted_index.of | 39, 80, 106, 129, 141, 146, 152, 158, 172, 175, 179 |
| abstract_inverted_index.on | 59, 112 |
| abstract_inverted_index.to | 25, 102 |
| abstract_inverted_index.97% | 135 |
| abstract_inverted_index.The | 119, 132 |
| abstract_inverted_index.and | 30, 54, 71, 93, 117, 127, 160, 177 |
| abstract_inverted_index.can | 21, 187, 202 |
| abstract_inverted_index.for | 143, 154 |
| abstract_inverted_index.has | 99 |
| abstract_inverted_index.per | 148 |
| abstract_inverted_index.the | 11, 28, 48, 104, 139, 144, 150, 155, 163, 183, 193, 198, 204 |
| abstract_inverted_index.use | 36 |
| abstract_inverted_index.(DT) | 74 |
| abstract_inverted_index.(ML) | 42 |
| abstract_inverted_index.70%, | 82 |
| abstract_inverted_index.97%, | 176 |
| abstract_inverted_index.98%, | 173, 180 |
| abstract_inverted_index.CART | 195 |
| abstract_inverted_index.High | 17 |
| abstract_inverted_index.also | 167 |
| abstract_inverted_index.been | 100 |
| abstract_inverted_index.best | 199 |
| abstract_inverted_index.data | 46, 122 |
| abstract_inverted_index.eyes | 29 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.rate | 79 |
| abstract_inverted_index.such | 65 |
| abstract_inverted_index.that | 8, 182 |
| abstract_inverted_index.this | 89 |
| abstract_inverted_index.tree | 73, 95 |
| abstract_inverted_index.when | 10 |
| abstract_inverted_index.with | 197 |
| abstract_inverted_index.(SVM) | 70 |
| abstract_inverted_index.Prior | 57 |
| abstract_inverted_index.based | 111 |
| abstract_inverted_index.blood | 6, 18 |
| abstract_inverted_index.cause | 22 |
| abstract_inverted_index.model | 98, 133, 186, 196 |
| abstract_inverted_index.node, | 149 |
| abstract_inverted_index.other | 55 |
| abstract_inverted_index.split | 164 |
| abstract_inverted_index.study | 120 |
| abstract_inverted_index.three | 113 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.value | 140, 151 |
| abstract_inverted_index.which | 83, 109, 166 |
| abstract_inverted_index.while | 14, 137 |
| abstract_inverted_index.(CART) | 96 |
| abstract_inverted_index.damage | 24 |
| abstract_inverted_index.enable | 203 |
| abstract_inverted_index.health | 52 |
| abstract_inverted_index.leaves | 147 |
| abstract_inverted_index.levels | 20 |
| abstract_inverted_index.models | 34 |
| abstract_inverted_index.number | 145, 157 |
| abstract_inverted_index.occurs | 9 |
| abstract_inverted_index.recall | 174 |
| abstract_inverted_index.steps, | 124 |
| abstract_inverted_index.study, | 90 |
| abstract_inverted_index.vector | 68 |
| abstract_inverted_index.chronic | 23 |
| abstract_inverted_index.glucose | 7, 19, 49 |
| abstract_inverted_index.highest | 205 |
| abstract_inverted_index.improve | 103 |
| abstract_inverted_index.levels, | 50 |
| abstract_inverted_index.machine | 40, 69 |
| abstract_inverted_index.maximum | 156 |
| abstract_inverted_index.models, | 75 |
| abstract_inverted_index.modest. | 86 |
| abstract_inverted_index.organs, | 26 |
| abstract_inverted_index.patient | 51 |
| abstract_inverted_index.predict | 189 |
| abstract_inverted_index.setting | 201 |
| abstract_inverted_index.showing | 181 |
| abstract_inverted_index.splits, | 159 |
| abstract_inverted_index.support | 67 |
| abstract_inverted_index.tuning, | 126 |
| abstract_inverted_index.variety | 38 |
| abstract_inverted_index.various | 63 |
| abstract_inverted_index.Diabetes | 0, 32 |
| abstract_inverted_index.F1-score | 178 |
| abstract_inverted_index.accuracy | 78, 105, 136, 206 |
| abstract_inverted_index.achieved | 134 |
| abstract_inverted_index.classes. | 210 |
| abstract_inverted_index.classes: | 114 |
| abstract_inverted_index.decision | 72 |
| abstract_inverted_index.deviance | 161 |
| abstract_inverted_index.diabetes | 60, 107, 209 |
| abstract_inverted_index.insulin. | 16 |
| abstract_inverted_index.involved | 121 |
| abstract_inverted_index.kidneys. | 31 |
| abstract_inverted_index.learning | 41 |
| abstract_inverted_index.mellitus | 1 |
| abstract_inverted_index.metrics. | 131 |
| abstract_inverted_index.pancreas | 12 |
| abstract_inverted_index.proposed | 101, 184, 194 |
| abstract_inverted_index.research | 58 |
| abstract_inverted_index.resulted | 168 |
| abstract_inverted_index.combining | 45 |
| abstract_inverted_index.diabetes. | 190 |
| abstract_inverted_index.diabetic. | 118 |
| abstract_inverted_index.excessive | 5 |
| abstract_inverted_index.precision | 171 |
| abstract_inverted_index.producing | 15 |
| abstract_inverted_index.utilizing | 138 |
| abstract_inverted_index.Therefore, | 87 |
| abstract_inverted_index.accurately | 188 |
| abstract_inverted_index.algorithms | 43 |
| abstract_inverted_index.criterion, | 165 |
| abstract_inverted_index.evaluation | 128 |
| abstract_inverted_index.predicting | 208 |
| abstract_inverted_index.prediction | 33, 61 |
| abstract_inverted_index.regression | 94 |
| abstract_inverted_index.relatively | 85 |
| abstract_inverted_index.algorithms, | 64 |
| abstract_inverted_index.biomarkers. | 56 |
| abstract_inverted_index.conclusion, | 192 |
| abstract_inverted_index.parameters, | 53 |
| abstract_inverted_index.performance | 130 |
| abstract_inverted_index.prediction, | 108 |
| abstract_inverted_index.demonstrates | 76 |
| abstract_inverted_index.malfunctions | 13 |
| abstract_inverted_index.particularly | 27 |
| abstract_inverted_index.approximately | 81 |
| abstract_inverted_index.characterized | 3 |
| abstract_inverted_index.non-diabetic, | 115 |
| abstract_inverted_index.pre-diabetic, | 116 |
| abstract_inverted_index.preprocessing | 123 |
| abstract_inverted_index.traditionally | 35 |
| abstract_inverted_index.classification | 92 |
| abstract_inverted_index.hyperparameter | 125, 200 |
| abstract_inverted_index.multiclassifier | 97, 185 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.88667451 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |