Classification of COVID-19 and lung opacity using vision transformer on chest x-ray images Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2622/1/012016
There are several recent works which had proposed an automatic computer-aided diagnosis (CAD) deep learning (DL) model to diagnose coronavirus disease 2019 (COVID-19) using chest x-ray images (CXR) to propose a high-accuracy CAD method to detect COVID-19 automatically. In this study, seven different models including Convolutional Neural Network (CNN) models such as VGG-16 and vision transformer (ViT) models, are proposed. The different proposed models are trained with a three-class balanced dataset consisting of 3,000 CXR images consisting of 1,000 CXR images for each class of COVID-19, Normal, and Lung-Opacity. A publicly available dataset to train and test the models is used from Kaggle-COVID-19-Radiography-Dataset. From the experiments, the accuracy of the VGG16 model is 93.44% and ViT’s is 92.33%. Besides, the binary classification between two classes of COVID-19 and Normal CXR with a limited number of just 100 images for each class, using a transfer learning technique, with a validation accuracy of 97.5% is proposed.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2622/1/012016
- https://iopscience.iop.org/article/10.1088/1742-6596/2622/1/012016/pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388698819
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388698819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2622/1/012016Digital Object Identifier
- Title
-
Classification of COVID-19 and lung opacity using vision transformer on chest x-ray imagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-01Full publication date if available
- Authors
-
Manoochehr Noghanian Toroghi, Usman Ullah Sheikh, Shima Shahi IraniList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2622/1/012016Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/2622/1/012016/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/2622/1/012016/pdfDirect OA link when available
- Concepts
-
Convolutional neural network, Coronavirus disease 2019 (COVID-19), Artificial intelligence, Computer science, Transfer of learning, Pattern recognition (psychology), Deep learning, Radiography, CAD, Transformer, Opacity, Computer-aided diagnosis, Binary classification, Medicine, Radiology, Support vector machine, Pathology, Infectious disease (medical specialty), Disease, Optics, Physics, Voltage, Quantum mechanics, Engineering drawing, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388698819 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2622/1/012016 |
| ids.doi | https://doi.org/10.1088/1742-6596/2622/1/012016 |
| ids.openalex | https://openalex.org/W4388698819 |
| fwci | 0.61810993 |
| type | article |
| title | Classification of COVID-19 and lung opacity using vision transformer on chest x-ray images |
| biblio.issue | 1 |
| biblio.volume | 2622 |
| biblio.last_page | 012016 |
| biblio.first_page | 012016 |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12874 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9368000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Digital Imaging for Blood Diseases |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9304999709129333 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7865003347396851 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C3008058167 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7422518730163574 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[1].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7178965210914612 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6568678617477417 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C150899416 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6135886907577515 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[4].display_name | Transfer of learning |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.548195481300354 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5398622751235962 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C36454342 |
| concepts[7].level | 2 |
| concepts[7].score | 0.53444904088974 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q245341 |
| concepts[7].display_name | Radiography |
| concepts[8].id | https://openalex.org/C194789388 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5276015400886536 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17855283 |
| concepts[8].display_name | CAD |
| concepts[9].id | https://openalex.org/C66322947 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4838932454586029 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[9].display_name | Transformer |
| concepts[10].id | https://openalex.org/C60056205 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4629247188568115 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q691914 |
| concepts[10].display_name | Opacity |
| concepts[11].id | https://openalex.org/C2779549770 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45690786838531494 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1122413 |
| concepts[11].display_name | Computer-aided diagnosis |
| concepts[12].id | https://openalex.org/C66905080 |
| concepts[12].level | 3 |
| concepts[12].score | 0.442010760307312 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q17005494 |
| concepts[12].display_name | Binary classification |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.21269801259040833 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C126838900 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1876910924911499 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[14].display_name | Radiology |
| concepts[15].id | https://openalex.org/C12267149 |
| concepts[15].level | 2 |
| concepts[15].score | 0.14929085969924927 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[15].display_name | Support vector machine |
| concepts[16].id | https://openalex.org/C142724271 |
| concepts[16].level | 1 |
| concepts[16].score | 0.13797512650489807 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[16].display_name | Pathology |
| concepts[17].id | https://openalex.org/C524204448 |
| concepts[17].level | 3 |
| concepts[17].score | 0.08761689066886902 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[17].display_name | Infectious disease (medical specialty) |
| concepts[18].id | https://openalex.org/C2779134260 |
| concepts[18].level | 2 |
| concepts[18].score | 0.07837170362472534 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[18].display_name | Disease |
| concepts[19].id | https://openalex.org/C120665830 |
| concepts[19].level | 1 |
| concepts[19].score | 0.059972286224365234 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[19].display_name | Optics |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C165801399 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[21].display_name | Voltage |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| concepts[23].id | https://openalex.org/C199639397 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1788588 |
| concepts[23].display_name | Engineering drawing |
| concepts[24].id | https://openalex.org/C127413603 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[24].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7865003347396851 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[1].score | 0.7422518730163574 |
| keywords[1].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7178965210914612 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6568678617477417 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[4].score | 0.6135886907577515 |
| keywords[4].display_name | Transfer of learning |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.548195481300354 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5398622751235962 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/radiography |
| keywords[7].score | 0.53444904088974 |
| keywords[7].display_name | Radiography |
| keywords[8].id | https://openalex.org/keywords/cad |
| keywords[8].score | 0.5276015400886536 |
| keywords[8].display_name | CAD |
| keywords[9].id | https://openalex.org/keywords/transformer |
| keywords[9].score | 0.4838932454586029 |
| keywords[9].display_name | Transformer |
| keywords[10].id | https://openalex.org/keywords/opacity |
| keywords[10].score | 0.4629247188568115 |
| keywords[10].display_name | Opacity |
| keywords[11].id | https://openalex.org/keywords/computer-aided-diagnosis |
| keywords[11].score | 0.45690786838531494 |
| keywords[11].display_name | Computer-aided diagnosis |
| keywords[12].id | https://openalex.org/keywords/binary-classification |
| keywords[12].score | 0.442010760307312 |
| keywords[12].display_name | Binary classification |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.21269801259040833 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/radiology |
| keywords[14].score | 0.1876910924911499 |
| keywords[14].display_name | Radiology |
| keywords[15].id | https://openalex.org/keywords/support-vector-machine |
| keywords[15].score | 0.14929085969924927 |
| keywords[15].display_name | Support vector machine |
| keywords[16].id | https://openalex.org/keywords/pathology |
| keywords[16].score | 0.13797512650489807 |
| keywords[16].display_name | Pathology |
| keywords[17].id | https://openalex.org/keywords/infectious-disease |
| keywords[17].score | 0.08761689066886902 |
| keywords[17].display_name | Infectious disease (medical specialty) |
| keywords[18].id | https://openalex.org/keywords/disease |
| keywords[18].score | 0.07837170362472534 |
| keywords[18].display_name | Disease |
| keywords[19].id | https://openalex.org/keywords/optics |
| keywords[19].score | 0.059972286224365234 |
| keywords[19].display_name | Optics |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2622/1/012016 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2622/1/012016/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2622/1/012016 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5093267178 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Manoochehr Noghanian Toroghi |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I4576418 |
| authorships[0].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | University of Technology Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Manoochehr Noghanian Toroghi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia |
| authorships[1].author.id | https://openalex.org/A5075184201 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9054-093X |
| authorships[1].author.display_name | Usman Ullah Sheikh |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I4576418 |
| authorships[1].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | University of Technology Malaysia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Usman Ullah Sheikh |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia |
| authorships[2].author.id | https://openalex.org/A5111074905 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shima Shahi Irani |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I155417937 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, University of Applied Science, Bonn Rhein Sieg, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I155417937 |
| authorships[2].institutions[0].ror | https://ror.org/04m2anh63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I155417937 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Hochschule Bonn-Rhein-Sieg |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shima Shahi Irani |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, University of Applied Science, Bonn Rhein Sieg, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/1742-6596/2622/1/012016/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Classification of COVID-19 and lung opacity using vision transformer on chest x-ray images |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W1589419489, https://openalex.org/W4229543669, https://openalex.org/W1783185948, https://openalex.org/W1554029525, https://openalex.org/W2999505641, https://openalex.org/W2401866201, https://openalex.org/W2945629533, https://openalex.org/W615772105, https://openalex.org/W2013631688, https://openalex.org/W1978794434 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2622/1/012016 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2622/1/012016/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2622/1/012016 |
| primary_location.id | doi:10.1088/1742-6596/2622/1/012016 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2622/1/012016/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2622/1/012016 |
| publication_date | 2023-10-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4247907320, https://openalex.org/W3083972167, https://openalex.org/W3036908895, https://openalex.org/W3048749423, https://openalex.org/W3165711712, https://openalex.org/W3093710833, https://openalex.org/W3082946543, https://openalex.org/W4385245566, https://openalex.org/W3138516171 |
| referenced_works_count | 9 |
| abstract_inverted_index.A | 90 |
| abstract_inverted_index.a | 31, 68, 132, 143, 148 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.an | 9 |
| abstract_inverted_index.as | 52 |
| abstract_inverted_index.is | 100, 113, 117, 153 |
| abstract_inverted_index.of | 73, 78, 85, 109, 126, 135, 151 |
| abstract_inverted_index.to | 18, 29, 35, 94 |
| abstract_inverted_index.100 | 137 |
| abstract_inverted_index.CAD | 33 |
| abstract_inverted_index.CXR | 75, 80, 130 |
| abstract_inverted_index.The | 61 |
| abstract_inverted_index.and | 54, 88, 96, 115, 128 |
| abstract_inverted_index.are | 2, 59, 65 |
| abstract_inverted_index.for | 82, 139 |
| abstract_inverted_index.had | 7 |
| abstract_inverted_index.the | 98, 105, 107, 110, 120 |
| abstract_inverted_index.two | 124 |
| abstract_inverted_index.(DL) | 16 |
| abstract_inverted_index.2019 | 22 |
| abstract_inverted_index.From | 104 |
| abstract_inverted_index.deep | 14 |
| abstract_inverted_index.each | 83, 140 |
| abstract_inverted_index.from | 102 |
| abstract_inverted_index.just | 136 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.test | 97 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.used | 101 |
| abstract_inverted_index.with | 67, 131, 147 |
| abstract_inverted_index.(CAD) | 13 |
| abstract_inverted_index.(CNN) | 49 |
| abstract_inverted_index.(CXR) | 28 |
| abstract_inverted_index.(ViT) | 57 |
| abstract_inverted_index.1,000 | 79 |
| abstract_inverted_index.3,000 | 74 |
| abstract_inverted_index.97.5% | 152 |
| abstract_inverted_index.There | 1 |
| abstract_inverted_index.VGG16 | 111 |
| abstract_inverted_index.chest | 25 |
| abstract_inverted_index.class | 84 |
| abstract_inverted_index.model | 17, 112 |
| abstract_inverted_index.seven | 42 |
| abstract_inverted_index.train | 95 |
| abstract_inverted_index.using | 24, 142 |
| abstract_inverted_index.which | 6 |
| abstract_inverted_index.works | 5 |
| abstract_inverted_index.x-ray | 26 |
| abstract_inverted_index.93.44% | 114 |
| abstract_inverted_index.Neural | 47 |
| abstract_inverted_index.Normal | 129 |
| abstract_inverted_index.VGG-16 | 53 |
| abstract_inverted_index.binary | 121 |
| abstract_inverted_index.class, | 141 |
| abstract_inverted_index.detect | 36 |
| abstract_inverted_index.images | 27, 76, 81, 138 |
| abstract_inverted_index.method | 34 |
| abstract_inverted_index.models | 44, 50, 64, 99 |
| abstract_inverted_index.number | 134 |
| abstract_inverted_index.recent | 4 |
| abstract_inverted_index.study, | 41 |
| abstract_inverted_index.vision | 55 |
| abstract_inverted_index.92.33%. | 118 |
| abstract_inverted_index.Network | 48 |
| abstract_inverted_index.Normal, | 87 |
| abstract_inverted_index.ViT’s | 116 |
| abstract_inverted_index.between | 123 |
| abstract_inverted_index.classes | 125 |
| abstract_inverted_index.dataset | 71, 93 |
| abstract_inverted_index.disease | 21 |
| abstract_inverted_index.limited | 133 |
| abstract_inverted_index.models, | 58 |
| abstract_inverted_index.propose | 30 |
| abstract_inverted_index.several | 3 |
| abstract_inverted_index.trained | 66 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Besides, | 119 |
| abstract_inverted_index.COVID-19 | 37, 127 |
| abstract_inverted_index.accuracy | 108, 150 |
| abstract_inverted_index.balanced | 70 |
| abstract_inverted_index.diagnose | 19 |
| abstract_inverted_index.learning | 15, 145 |
| abstract_inverted_index.proposed | 8, 63 |
| abstract_inverted_index.publicly | 91 |
| abstract_inverted_index.transfer | 144 |
| abstract_inverted_index.COVID-19, | 86 |
| abstract_inverted_index.automatic | 10 |
| abstract_inverted_index.available | 92 |
| abstract_inverted_index.diagnosis | 12 |
| abstract_inverted_index.different | 43, 62 |
| abstract_inverted_index.including | 45 |
| abstract_inverted_index.proposed. | 60, 154 |
| abstract_inverted_index.(COVID-19) | 23 |
| abstract_inverted_index.consisting | 72, 77 |
| abstract_inverted_index.technique, | 146 |
| abstract_inverted_index.validation | 149 |
| abstract_inverted_index.coronavirus | 20 |
| abstract_inverted_index.three-class | 69 |
| abstract_inverted_index.transformer | 56 |
| abstract_inverted_index.experiments, | 106 |
| abstract_inverted_index.Convolutional | 46 |
| abstract_inverted_index.Lung-Opacity. | 89 |
| abstract_inverted_index.high-accuracy | 32 |
| abstract_inverted_index.automatically. | 38 |
| abstract_inverted_index.classification | 122 |
| abstract_inverted_index.computer-aided | 11 |
| abstract_inverted_index.Kaggle-COVID-19-Radiography-Dataset. | 103 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5075184201 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4576418 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.70098719 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |