Classification of histopathological breast cancer images using iterative VMD aided Zernike moments & textural signatures Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1801.04880
In this paper we present a novel method for an automated diagnosis of breast carcinoma through multilevel iterative variational mode decomposition (VMD) and textural features encompassing Zernaike moments, fractal dimension and entropy features namely, Kapoor entropy, Renyi entropy, Yager entropy features are extracted from VMD components. The proposed method considers the histopathological image as a set of multidimensional spatially-evolving signals. ReliefF algorithm is used to select the discriminatory features and statistically most significant features are fed to squares support vector machine (SVM) for classification. We evaluate the efficiency of the proposed methodology on publicly available Breakhis dataset containing 7,909 breast cancer histological images, collected from 82 patients, of both benign and malignant cases. Experimental results shows the efficacy of the proposed method in outperforming the state of the art while achieving an average classification rates of 89.61% and 88:23% using three-fold and ten-fold cross-validation strategies, respectively. This system can aid the pathologist in accurate and reliable diagnosis of biopsy samples. BreaKHis, a publicly dataset available at http://web.inf.ufpr.br/vri/breast-cancer-database.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1801.04880
- https://arxiv.org/pdf/1801.04880
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394659419
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394659419Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1801.04880Digital Object Identifier
- Title
-
Classification of histopathological breast cancer images using iterative VMD aided Zernike moments & textural signaturesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-15Full publication date if available
- Authors
-
Subhankar Chattoraj, Karan VishwakarmaList of authors in order
- Landing page
-
https://arxiv.org/abs/1801.04880Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1801.04880Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1801.04880Direct OA link when available
- Concepts
-
Zernike polynomials, Breast cancer, Artificial intelligence, Pattern recognition (psychology), Computer science, Medicine, Physics, Cancer, Optics, Internal medicine, WavefrontTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394659419 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1801.04880 |
| ids.doi | https://doi.org/10.48550/arxiv.1801.04880 |
| ids.openalex | https://openalex.org/W4394659419 |
| fwci | |
| type | preprint |
| title | Classification of histopathological breast cancer images using iterative VMD aided Zernike moments & textural signatures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9912999868392944 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9804999828338623 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T14510 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9236999750137329 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Medical Imaging and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C92423082 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9172012209892273 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q132146 |
| concepts[0].display_name | Zernike polynomials |
| concepts[1].id | https://openalex.org/C530470458 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6203300952911377 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[1].display_name | Breast cancer |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5021345615386963 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4038492441177368 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.36137133836746216 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3400951325893402 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3362206220626831 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C121608353 |
| concepts[7].level | 2 |
| concepts[7].score | 0.33519142866134644 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[7].display_name | Cancer |
| concepts[8].id | https://openalex.org/C120665830 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2530381679534912 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[8].display_name | Optics |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.10770821571350098 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| concepts[10].id | https://openalex.org/C165699331 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q461533 |
| concepts[10].display_name | Wavefront |
| keywords[0].id | https://openalex.org/keywords/zernike-polynomials |
| keywords[0].score | 0.9172012209892273 |
| keywords[0].display_name | Zernike polynomials |
| keywords[1].id | https://openalex.org/keywords/breast-cancer |
| keywords[1].score | 0.6203300952911377 |
| keywords[1].display_name | Breast cancer |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5021345615386963 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.4038492441177368 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.36137133836746216 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.3400951325893402 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.3362206220626831 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/cancer |
| keywords[7].score | 0.33519142866134644 |
| keywords[7].display_name | Cancer |
| keywords[8].id | https://openalex.org/keywords/optics |
| keywords[8].score | 0.2530381679534912 |
| keywords[8].display_name | Optics |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.10770821571350098 |
| keywords[9].display_name | Internal medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1801.04880 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1801.04880 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1801.04880 |
| locations[1].id | doi:10.48550/arxiv.1801.04880 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1801.04880 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5047348099 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1218-0769 |
| authorships[0].author.display_name | Subhankar Chattoraj |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Subhankar Chattoraj |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055684818 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Karan Vishwakarma |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Karan Vishwakarma |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1801.04880 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-11T00:00:00 |
| display_name | Classification of histopathological breast cancer images using iterative VMD aided Zernike moments & textural signatures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9912999868392944 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1997638723, https://openalex.org/W2547138831, https://openalex.org/W2061580049, https://openalex.org/W2067788074, https://openalex.org/W2183108721, https://openalex.org/W2073465494, https://openalex.org/W3160617640, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1801.04880 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1801.04880 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1801.04880 |
| primary_location.id | pmh:oai:arXiv.org:1801.04880 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1801.04880 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1801.04880 |
| publication_date | 2018-01-15 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 54, 161 |
| abstract_inverted_index.82 | 105 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.an | 9, 131 |
| abstract_inverted_index.as | 53 |
| abstract_inverted_index.at | 165 |
| abstract_inverted_index.in | 122, 152 |
| abstract_inverted_index.is | 62 |
| abstract_inverted_index.of | 12, 56, 88, 107, 118, 126, 135, 157 |
| abstract_inverted_index.on | 92 |
| abstract_inverted_index.to | 64, 76 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.The | 46 |
| abstract_inverted_index.VMD | 44 |
| abstract_inverted_index.aid | 149 |
| abstract_inverted_index.and | 22, 30, 69, 110, 137, 141, 154 |
| abstract_inverted_index.are | 41, 74 |
| abstract_inverted_index.art | 128 |
| abstract_inverted_index.can | 148 |
| abstract_inverted_index.fed | 75 |
| abstract_inverted_index.for | 8, 82 |
| abstract_inverted_index.set | 55 |
| abstract_inverted_index.the | 50, 66, 86, 89, 116, 119, 124, 127, 150 |
| abstract_inverted_index.This | 146 |
| abstract_inverted_index.both | 108 |
| abstract_inverted_index.from | 43, 104 |
| abstract_inverted_index.mode | 19 |
| abstract_inverted_index.most | 71 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.used | 63 |
| abstract_inverted_index.(SVM) | 81 |
| abstract_inverted_index.(VMD) | 21 |
| abstract_inverted_index.7,909 | 98 |
| abstract_inverted_index.Renyi | 36 |
| abstract_inverted_index.Yager | 38 |
| abstract_inverted_index.image | 52 |
| abstract_inverted_index.novel | 6 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.rates | 134 |
| abstract_inverted_index.shows | 115 |
| abstract_inverted_index.state | 125 |
| abstract_inverted_index.using | 139 |
| abstract_inverted_index.while | 129 |
| abstract_inverted_index.88:23% | 138 |
| abstract_inverted_index.89.61% | 136 |
| abstract_inverted_index.Kapoor | 34 |
| abstract_inverted_index.benign | 109 |
| abstract_inverted_index.biopsy | 158 |
| abstract_inverted_index.breast | 13, 99 |
| abstract_inverted_index.cancer | 100 |
| abstract_inverted_index.cases. | 112 |
| abstract_inverted_index.method | 7, 48, 121 |
| abstract_inverted_index.select | 65 |
| abstract_inverted_index.system | 147 |
| abstract_inverted_index.vector | 79 |
| abstract_inverted_index.ReliefF | 60 |
| abstract_inverted_index.average | 132 |
| abstract_inverted_index.dataset | 96, 163 |
| abstract_inverted_index.entropy | 31, 39 |
| abstract_inverted_index.fractal | 28 |
| abstract_inverted_index.images, | 102 |
| abstract_inverted_index.machine | 80 |
| abstract_inverted_index.namely, | 33 |
| abstract_inverted_index.present | 4 |
| abstract_inverted_index.results | 114 |
| abstract_inverted_index.squares | 77 |
| abstract_inverted_index.support | 78 |
| abstract_inverted_index.through | 15 |
| abstract_inverted_index.Breakhis | 95 |
| abstract_inverted_index.Zernaike | 26 |
| abstract_inverted_index.accurate | 153 |
| abstract_inverted_index.efficacy | 117 |
| abstract_inverted_index.entropy, | 35, 37 |
| abstract_inverted_index.evaluate | 85 |
| abstract_inverted_index.features | 24, 32, 40, 68, 73 |
| abstract_inverted_index.moments, | 27 |
| abstract_inverted_index.proposed | 47, 90, 120 |
| abstract_inverted_index.publicly | 93, 162 |
| abstract_inverted_index.reliable | 155 |
| abstract_inverted_index.samples. | 159 |
| abstract_inverted_index.signals. | 59 |
| abstract_inverted_index.ten-fold | 142 |
| abstract_inverted_index.textural | 23 |
| abstract_inverted_index.BreaKHis, | 160 |
| abstract_inverted_index.achieving | 130 |
| abstract_inverted_index.algorithm | 61 |
| abstract_inverted_index.automated | 10 |
| abstract_inverted_index.available | 94, 164 |
| abstract_inverted_index.carcinoma | 14 |
| abstract_inverted_index.collected | 103 |
| abstract_inverted_index.considers | 49 |
| abstract_inverted_index.diagnosis | 11, 156 |
| abstract_inverted_index.dimension | 29 |
| abstract_inverted_index.extracted | 42 |
| abstract_inverted_index.iterative | 17 |
| abstract_inverted_index.malignant | 111 |
| abstract_inverted_index.patients, | 106 |
| abstract_inverted_index.containing | 97 |
| abstract_inverted_index.efficiency | 87 |
| abstract_inverted_index.multilevel | 16 |
| abstract_inverted_index.three-fold | 140 |
| abstract_inverted_index.components. | 45 |
| abstract_inverted_index.methodology | 91 |
| abstract_inverted_index.pathologist | 151 |
| abstract_inverted_index.significant | 72 |
| abstract_inverted_index.strategies, | 144 |
| abstract_inverted_index.variational | 18 |
| abstract_inverted_index.Experimental | 113 |
| abstract_inverted_index.encompassing | 25 |
| abstract_inverted_index.histological | 101 |
| abstract_inverted_index.decomposition | 20 |
| abstract_inverted_index.outperforming | 123 |
| abstract_inverted_index.respectively. | 145 |
| abstract_inverted_index.statistically | 70 |
| abstract_inverted_index.classification | 133 |
| abstract_inverted_index.discriminatory | 67 |
| abstract_inverted_index.classification. | 83 |
| abstract_inverted_index.cross-validation | 143 |
| abstract_inverted_index.multidimensional | 57 |
| abstract_inverted_index.histopathological | 51 |
| abstract_inverted_index.spatially-evolving | 58 |
| abstract_inverted_index.http://web.inf.ufpr.br/vri/breast-cancer-database. | 166 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |