Classification of Parkinsonian Syndromes from FDG-PET Brain Data Using Decision Trees with SSM/PCA Features Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1155/2015/136921
Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2015/136921
- https://downloads.hindawi.com/journals/cmmm/2015/136921.pdf
- OA Status
- hybrid
- Cited By
- 59
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2057374433
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2057374433Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2015/136921Digital Object Identifier
- Title
-
Classification of Parkinsonian Syndromes from FDG-PET Brain Data Using Decision Trees with SSM/PCA FeaturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Deborah Mudali, Laura K. Teune, Remco J. Renken, Klaus L. Leenders, Jos B. T. M. RoerdinkList of authors in order
- Landing page
-
https://doi.org/10.1155/2015/136921Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/cmmm/2015/136921.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/cmmm/2015/136921.pdfDirect OA link when available
- Concepts
-
Decision tree, Artificial intelligence, Pattern recognition (psychology), Progressive supranuclear palsy, Principal component analysis, Positron emission tomography, Context (archaeology), Decision tree learning, Computer science, Classifier (UML), Machine learning, Medicine, Pathology, Atrophy, Nuclear medicine, Biology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
59Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 7, 2023: 7, 2022: 5, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2057374433 |
|---|---|
| doi | https://doi.org/10.1155/2015/136921 |
| ids.doi | https://doi.org/10.1155/2015/136921 |
| ids.mag | 2057374433 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/25918550 |
| ids.openalex | https://openalex.org/W2057374433 |
| fwci | 4.78373322 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000368 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Aged |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000465 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Algorithms |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D001921 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Brain |
| mesh[3].qualifier_ui | Q000473 |
| mesh[3].descriptor_ui | D001921 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | pathology |
| mesh[3].descriptor_name | Brain |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D001931 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Brain Mapping |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D003663 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Decision Trees |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D005260 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Female |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D019788 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Fluorodeoxyglucose F18 |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008279 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Magnetic Resonance Imaging |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008297 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Male |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008875 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Middle Aged |
| mesh[12].qualifier_ui | Q000175 |
| mesh[12].descriptor_ui | D010300 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | diagnosis |
| mesh[12].descriptor_name | Parkinson Disease |
| mesh[13].qualifier_ui | Q000000981 |
| mesh[13].descriptor_ui | D010300 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | diagnostic imaging |
| mesh[13].descriptor_name | Parkinson Disease |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D049268 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Positron-Emission Tomography |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D025341 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Principal Component Analysis |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D012044 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Regression Analysis |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000368 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Aged |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000465 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Algorithms |
| mesh[19].qualifier_ui | Q000000981 |
| mesh[19].descriptor_ui | D001921 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | diagnostic imaging |
| mesh[19].descriptor_name | Brain |
| mesh[20].qualifier_ui | Q000473 |
| mesh[20].descriptor_ui | D001921 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | pathology |
| mesh[20].descriptor_name | Brain |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D001931 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Brain Mapping |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D003663 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Decision Trees |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D005260 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Female |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D019788 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Fluorodeoxyglucose F18 |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006801 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Humans |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D008279 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Magnetic Resonance Imaging |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D008297 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Male |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D008875 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Middle Aged |
| mesh[29].qualifier_ui | Q000175 |
| mesh[29].descriptor_ui | D010300 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | diagnosis |
| mesh[29].descriptor_name | Parkinson Disease |
| mesh[30].qualifier_ui | Q000000981 |
| mesh[30].descriptor_ui | D010300 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | diagnostic imaging |
| mesh[30].descriptor_name | Parkinson Disease |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D049268 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Positron-Emission Tomography |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D025341 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Principal Component Analysis |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D012044 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Regression Analysis |
| type | article |
| title | Classification of Parkinsonian Syndromes from FDG-PET Brain Data Using Decision Trees with SSM/PCA Features |
| biblio.issue | |
| biblio.volume | 2015 |
| biblio.last_page | 10 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10085 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2728 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Parkinson's Disease Mechanisms and Treatments |
| topics[1].id | https://openalex.org/T10919 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9782999753952026 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2728 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Neurological disorders and treatments |
| topics[2].id | https://openalex.org/T10863 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9038000106811523 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2737 |
| topics[2].subfield.display_name | Physiology |
| topics[2].display_name | Voice and Speech Disorders |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C84525736 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6642380952835083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[0].display_name | Decision tree |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6595758199691772 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5842169523239136 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C2776477761 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5537173748016357 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q945930 |
| concepts[3].display_name | Progressive supranuclear palsy |
| concepts[4].id | https://openalex.org/C27438332 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5404388308525085 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[4].display_name | Principal component analysis |
| concepts[5].id | https://openalex.org/C2775842073 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5341137051582336 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208376 |
| concepts[5].display_name | Positron emission tomography |
| concepts[6].id | https://openalex.org/C2779343474 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49735310673713684 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[6].display_name | Context (archaeology) |
| concepts[7].id | https://openalex.org/C5481197 |
| concepts[7].level | 3 |
| concepts[7].score | 0.49382027983665466 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q16766476 |
| concepts[7].display_name | Decision tree learning |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.47446995973587036 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C95623464 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44804465770721436 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[9].display_name | Classifier (UML) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.41128242015838623 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3093889653682709 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C142724271 |
| concepts[12].level | 1 |
| concepts[12].score | 0.27701321244239807 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[12].display_name | Pathology |
| concepts[13].id | https://openalex.org/C2781172350 |
| concepts[13].level | 2 |
| concepts[13].score | 0.27474647760391235 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q194520 |
| concepts[13].display_name | Atrophy |
| concepts[14].id | https://openalex.org/C2989005 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2679782211780548 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[14].display_name | Nuclear medicine |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/decision-tree |
| keywords[0].score | 0.6642380952835083 |
| keywords[0].display_name | Decision tree |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6595758199691772 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.5842169523239136 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/progressive-supranuclear-palsy |
| keywords[3].score | 0.5537173748016357 |
| keywords[3].display_name | Progressive supranuclear palsy |
| keywords[4].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[4].score | 0.5404388308525085 |
| keywords[4].display_name | Principal component analysis |
| keywords[5].id | https://openalex.org/keywords/positron-emission-tomography |
| keywords[5].score | 0.5341137051582336 |
| keywords[5].display_name | Positron emission tomography |
| keywords[6].id | https://openalex.org/keywords/context |
| keywords[6].score | 0.49735310673713684 |
| keywords[6].display_name | Context (archaeology) |
| keywords[7].id | https://openalex.org/keywords/decision-tree-learning |
| keywords[7].score | 0.49382027983665466 |
| keywords[7].display_name | Decision tree learning |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.47446995973587036 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/classifier |
| keywords[9].score | 0.44804465770721436 |
| keywords[9].display_name | Classifier (UML) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.41128242015838623 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.3093889653682709 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/pathology |
| keywords[12].score | 0.27701321244239807 |
| keywords[12].display_name | Pathology |
| keywords[13].id | https://openalex.org/keywords/atrophy |
| keywords[13].score | 0.27474647760391235 |
| keywords[13].display_name | Atrophy |
| keywords[14].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[14].score | 0.2679782211780548 |
| keywords[14].display_name | Nuclear medicine |
| language | en |
| locations[0].id | doi:10.1155/2015/136921 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36980176 |
| locations[0].source.issn | 1748-670X, 1748-6718 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1748-670X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computational and Mathematical Methods in Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/cmmm/2015/136921.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational and Mathematical Methods in Medicine |
| locations[0].landing_page_url | https://doi.org/10.1155/2015/136921 |
| locations[1].id | pmid:25918550 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Computational and mathematical methods in medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/25918550 |
| locations[2].id | pmh:oai:doaj.org/article:ffa30e0f52494268b9de7d08d0367c22 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Computational and Mathematical Methods in Medicine, Vol 2015 (2015) |
| locations[2].landing_page_url | https://doaj.org/article/ffa30e0f52494268b9de7d08d0367c22 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:4395991 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://doi.org/10.1155/2015/136921 |
| locations[4].id | pmh:rug:oai:pure.rug.nl:publications/a3ce5fb4-15ee-4b08-8a55-1cb29b2d7a97 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401843 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[4].source.host_organization | https://openalex.org/I1322597698 |
| locations[4].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[4].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | info:eu-repo/semantics/article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Computational and Mathematical Methods in Medicine, 2015:136921 |
| locations[4].landing_page_url | https://research.rug.nl/en/publications/a3ce5fb4-15ee-4b08-8a55-1cb29b2d7a97 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5004413540 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Deborah Mudali |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I169381384 |
| authorships[0].affiliations[0].raw_affiliation_string | Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I169381384 |
| authorships[0].institutions[0].ror | https://ror.org/012p63287 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I169381384 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | University of Groningen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | D. Mudali |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands |
| authorships[1].author.id | https://openalex.org/A5070012222 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Laura K. Teune |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1334415907, https://openalex.org/I169381384 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I1334415907 |
| authorships[1].institutions[0].ror | https://ror.org/03cv38k47 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1334415907 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | University Medical Center Groningen |
| authorships[1].institutions[1].id | https://openalex.org/I169381384 |
| authorships[1].institutions[1].ror | https://ror.org/012p63287 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I169381384 |
| authorships[1].institutions[1].country_code | NL |
| authorships[1].institutions[1].display_name | University of Groningen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | L. K. Teune |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands |
| authorships[2].author.id | https://openalex.org/A5011471000 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7777-9484 |
| authorships[2].author.display_name | Remco J. Renken |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1334415907, https://openalex.org/I169381384 |
| authorships[2].affiliations[0].raw_affiliation_string | Neuroimaging Center, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 2, 9713 AW Groningen, Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I1334415907 |
| authorships[2].institutions[0].ror | https://ror.org/03cv38k47 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1334415907 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | University Medical Center Groningen |
| authorships[2].institutions[1].id | https://openalex.org/I169381384 |
| authorships[2].institutions[1].ror | https://ror.org/012p63287 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I169381384 |
| authorships[2].institutions[1].country_code | NL |
| authorships[2].institutions[1].display_name | University of Groningen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | R. J. Renken |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Neuroimaging Center, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 2, 9713 AW Groningen, Netherlands |
| authorships[3].author.id | https://openalex.org/A5076606508 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9406-5512 |
| authorships[3].author.display_name | Klaus L. Leenders |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1334415907, https://openalex.org/I169381384 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands |
| authorships[3].institutions[0].id | https://openalex.org/I1334415907 |
| authorships[3].institutions[0].ror | https://ror.org/03cv38k47 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1334415907 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | University Medical Center Groningen |
| authorships[3].institutions[1].id | https://openalex.org/I169381384 |
| authorships[3].institutions[1].ror | https://ror.org/012p63287 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I169381384 |
| authorships[3].institutions[1].country_code | NL |
| authorships[3].institutions[1].display_name | University of Groningen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | K. L. Leenders |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands |
| authorships[4].author.id | https://openalex.org/A5073784823 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1092-9633 |
| authorships[4].author.display_name | Jos B. T. M. Roerdink |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1334415907, https://openalex.org/I169381384 |
| authorships[4].affiliations[0].raw_affiliation_string | Neuroimaging Center, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 2, 9713 AW Groningen, Netherlands |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I169381384 |
| authorships[4].affiliations[1].raw_affiliation_string | Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands |
| authorships[4].institutions[0].id | https://openalex.org/I1334415907 |
| authorships[4].institutions[0].ror | https://ror.org/03cv38k47 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1334415907 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | University Medical Center Groningen |
| authorships[4].institutions[1].id | https://openalex.org/I169381384 |
| authorships[4].institutions[1].ror | https://ror.org/012p63287 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I169381384 |
| authorships[4].institutions[1].country_code | NL |
| authorships[4].institutions[1].display_name | University of Groningen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | J. B. T. M. Roerdink |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands, Neuroimaging Center, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 2, 9713 AW Groningen, Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/cmmm/2015/136921.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Classification of Parkinsonian Syndromes from FDG-PET Brain Data Using Decision Trees with SSM/PCA Features |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10085 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2728 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Parkinson's Disease Mechanisms and Treatments |
| related_works | https://openalex.org/W2591672004, https://openalex.org/W1982169401, https://openalex.org/W2356463514, https://openalex.org/W4319437832, https://openalex.org/W4243803609, https://openalex.org/W2030894524, https://openalex.org/W2350430350, https://openalex.org/W2592385415, https://openalex.org/W102063058, https://openalex.org/W2006686080 |
| cited_by_count | 59 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 6 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 12 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 3 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 4 |
| counts_by_year[10].year | 2015 |
| counts_by_year[10].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1155/2015/136921 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36980176 |
| best_oa_location.source.issn | 1748-670X, 1748-6718 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1748-670X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computational and Mathematical Methods in Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/cmmm/2015/136921.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational and Mathematical Methods in Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2015/136921 |
| primary_location.id | doi:10.1155/2015/136921 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36980176 |
| primary_location.source.issn | 1748-670X, 1748-6718 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1748-670X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computational and Mathematical Methods in Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/cmmm/2015/136921.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational and Mathematical Methods in Medicine |
| primary_location.landing_page_url | https://doi.org/10.1155/2015/136921 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2020125528, https://openalex.org/W1965144006, https://openalex.org/W2008591007, https://openalex.org/W2058415227, https://openalex.org/W2172224325, https://openalex.org/W2048207814, https://openalex.org/W1530490147, https://openalex.org/W1999694937, https://openalex.org/W2088292384, https://openalex.org/W1990816744, https://openalex.org/W2155299862, https://openalex.org/W2136557657, https://openalex.org/W2044266196, https://openalex.org/W2009103351, https://openalex.org/W2030420268, https://openalex.org/W120126374, https://openalex.org/W2003233718, https://openalex.org/W2137900839, https://openalex.org/W2007417077, https://openalex.org/W2102972601, https://openalex.org/W1608071409, https://openalex.org/W2142635246, https://openalex.org/W1833977909, https://openalex.org/W2007263678, https://openalex.org/W1504694836, https://openalex.org/W2135346934, https://openalex.org/W2587067849, https://openalex.org/W241856062, https://openalex.org/W2013574563, https://openalex.org/W1976331960, https://openalex.org/W2101234009 |
| referenced_works_count | 31 |
| abstract_inverted_index.A | 125 |
| abstract_inverted_index.a | 101 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.as | 78 |
| abstract_inverted_index.by | 83, 123, 164 |
| abstract_inverted_index.in | 14, 140 |
| abstract_inverted_index.is | 27, 115, 137 |
| abstract_inverted_index.of | 18, 33, 106, 111, 128, 143, 155 |
| abstract_inverted_index.on | 151, 171 |
| abstract_inverted_index.to | 12, 28, 48, 61, 66, 94, 121 |
| abstract_inverted_index.The | 51, 74, 108 |
| abstract_inverted_index.aid | 13 |
| abstract_inverted_index.and | 43, 70, 166 |
| abstract_inverted_index.are | 119, 148 |
| abstract_inverted_index.big | 109 |
| abstract_inverted_index.for | 80 |
| abstract_inverted_index.out | 100 |
| abstract_inverted_index.the | 15, 25, 84, 117, 133, 141, 153, 156, 160 |
| abstract_inverted_index.was | 59, 92 |
| abstract_inverted_index.C4.5 | 85 |
| abstract_inverted_index.been | 10 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.easy | 120 |
| abstract_inverted_index.have | 9 |
| abstract_inverted_index.like | 3 |
| abstract_inverted_index.that | 116 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.tree | 87, 113, 162 |
| abstract_inverted_index.used | 11, 77 |
| abstract_inverted_index.very | 138 |
| abstract_inverted_index.were | 76 |
| abstract_inverted_index.with | 35, 103 |
| abstract_inverted_index.based | 150, 170 |
| abstract_inverted_index.brain | 20, 31, 63 |
| abstract_inverted_index.cross | 90 |
| abstract_inverted_index.data, | 158 |
| abstract_inverted_index.data. | 173 |
| abstract_inverted_index.image | 64 |
| abstract_inverted_index.other | 104 |
| abstract_inverted_index.scans | 32 |
| abstract_inverted_index.trees | 130 |
| abstract_inverted_index.types | 105 |
| abstract_inverted_index.which | 136 |
| abstract_inverted_index.(f)MRI | 172 |
| abstract_inverted_index.adding | 167 |
| abstract_inverted_index.latter | 75 |
| abstract_inverted_index.method | 58, 163 |
| abstract_inverted_index.number | 154 |
| abstract_inverted_index.obtain | 67 |
| abstract_inverted_index.palsy) | 46 |
| abstract_inverted_index.scaled | 52 |
| abstract_inverted_index.study, | 24 |
| abstract_inverted_index.system | 41 |
| abstract_inverted_index.visual | 126 |
| abstract_inverted_index.FDG-PET | 30, 62 |
| abstract_inverted_index.Further | 146 |
| abstract_inverted_index.Medical | 0 |
| abstract_inverted_index.applied | 60, 93 |
| abstract_inverted_index.carried | 99 |
| abstract_inverted_index.context | 142 |
| abstract_inverted_index.healthy | 49 |
| abstract_inverted_index.humans. | 124 |
| abstract_inverted_index.imaging | 1 |
| abstract_inverted_index.medical | 144 |
| abstract_inverted_index.method. | 88 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.scores. | 73 |
| abstract_inverted_index.subject | 72 |
| abstract_inverted_index.analysis | 56 |
| abstract_inverted_index.atrophy, | 42 |
| abstract_inverted_index.bagging, | 165 |
| abstract_inverted_index.classify | 29 |
| abstract_inverted_index.compared | 47 |
| abstract_inverted_index.decision | 86, 112, 129, 161 |
| abstract_inverted_index.disease, | 39 |
| abstract_inverted_index.emission | 6 |
| abstract_inverted_index.features | 79, 169 |
| abstract_inverted_index.multiple | 40 |
| abstract_inverted_index.patterns | 69 |
| abstract_inverted_index.positron | 5 |
| abstract_inverted_index.process, | 135 |
| abstract_inverted_index.strongly | 131 |
| abstract_inverted_index.subjects | 34 |
| abstract_inverted_index.supports | 132 |
| abstract_inverted_index.training | 157 |
| abstract_inverted_index.(FDG-PET) | 8 |
| abstract_inverted_index.(SSM/PCA) | 57 |
| abstract_inverted_index.advantage | 110 |
| abstract_inverted_index.component | 55 |
| abstract_inverted_index.controls. | 50 |
| abstract_inverted_index.determine | 95 |
| abstract_inverted_index.diagnosis | 17 |
| abstract_inverted_index.diseases. | 21 |
| abstract_inverted_index.enhancing | 159 |
| abstract_inverted_index.enlarging | 152 |
| abstract_inverted_index.important | 139 |
| abstract_inverted_index.objective | 26 |
| abstract_inverted_index.suggested | 149 |
| abstract_inverted_index.syndromes | 37 |
| abstract_inverted_index.additional | 168 |
| abstract_inverted_index.classifier | 96 |
| abstract_inverted_index.comparison | 102 |
| abstract_inverted_index.covariance | 68 |
| abstract_inverted_index.diagnosis. | 145 |
| abstract_inverted_index.subprofile | 53 |
| abstract_inverted_index.supervised | 81 |
| abstract_inverted_index.techniques | 2 |
| abstract_inverted_index.tomography | 7 |
| abstract_inverted_index.understand | 122 |
| abstract_inverted_index.validation | 91 |
| abstract_inverted_index.progressive | 44 |
| abstract_inverted_index.Parkinsonian | 36 |
| abstract_inverted_index.classifiers. | 107 |
| abstract_inverted_index.differential | 16 |
| abstract_inverted_index.improvements | 147 |
| abstract_inverted_index.performance. | 97 |
| abstract_inverted_index.supranuclear | 45 |
| abstract_inverted_index.Leave-one-out | 89 |
| abstract_inverted_index.corresponding | 71 |
| abstract_inverted_index.(Parkinson’s | 38 |
| abstract_inverted_index.classification | 82, 114 |
| abstract_inverted_index.interpretation | 134 |
| abstract_inverted_index.representation | 127 |
| abstract_inverted_index.model/principal | 54 |
| abstract_inverted_index.neurodegenerative | 19 |
| abstract_inverted_index.fluorodeoxyglucose | 4 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5073784823 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I1334415907, https://openalex.org/I169381384 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.94266416 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |